
FinePack: Transparently Improving the Efficiency of
Fine-Grained Transfers in Multi-GPU Systems

Harini Muthukrishnan12, Daniel Lustig1, Oreste Villa1, Thomas Wenisch2, and David Nellans1

1NVIDIA
2University of Michigan

Abstract—Recent studies have shown that using fine-grained
peer-to-peer (P2P) stores to communicate among devices in multi-
GPU systems is a promising path to achieve strong performance
scaling. In many irregular applications, such as graph algo-
rithms and sparse linear algebra, small sub-cache line (4-32B)
stores arise naturally when using the P2P paradigm. This is
particularly problematic in multi-GPU systems because inter-
GPU interconnects are optimized for bulk transfers rather than
small operations. As a consequence, application developers either
resort to complex programming techniques to work around
this small transfer inefficiency or fall back to bulk inter-GPU
DMA transfers that have limited performance scalability. We
propose FinePack, a set of limited I/O interconnect and GPU
hardware enhancements that enable small peer-to-peer stores to
achieve interconnect efficiency that rivals bulk transfers while
maintaining the simplicity of a peer-to-peer memory access
programming model. Exploiting the GPU’s weak memory model,
FinePack dynamically coalesces and compresses small writes into
a larger I/O message that reduces link-level protocol overhead.
FinePack is fully transparent to software and requires no changes
to the GPU’s virtual memory system. We evaluate FinePack on
a system comprising 4 Volta GPUs on a PCIe 4.0 interconnect
to show FinePack improves interconnect efficiency for small
peer-to-peer stores by 3×. This results in 4-GPU strong scaling
performance 1.4× better than traditional DMA based multi-GPU
programming and comes within 71% of the maximum achievable
strong scaling performance.

I. INTRODUCTION

As demand for compute throughput skyrockets, GPU ven-
dors continue to deliver larger systems comprising more GPUs,
additional memory bandwidth, and larger interconnection net-
works. Many problems in the high performance computing and
deep learning (DL) domains show excellent weak scaling char-
acteristics and naturally enjoy continued performance scaling
as computing systems grow. Recently, tasks such DL training
with billions of parameters have been scaled to systems with
thousands of GPUs thanks to continuous development effort
among the GPU computing industry [16], [17].

However, strong scaling problems across increasing num-
bers of GPUs is often accompanied by a super-linear increase
in inter-GPU communication. As a result, attempts to strong-
scale application performance typically become limited by
the inter-GPU interconnect, even at low GPU counts. The
strong scaling challenge is exacerbated by the fact that today’s
best GPU-to-GPU interconnects deliver bandwidth that is an
order of magnitude smaller than the GPU’s locally attached
memory bandwidth [22], [33]. This inter-GPU bottleneck is

Fig. 1: A GPU’s SM issues writes at sub-cacheline granularity
for many irregular applications. No coalescing beyond the
L1 cache results in transfer inefficiencies, due to protocol
overhead and unread bytes at the receiver.

so severe that many multi-GPU programs exhibit slowdowns
when compared to their single GPU counterparts, even after
tedious manual optimization [22], [31], [32].

To improve multi-GPU strong scaling performance, multi-
GPU programming models and architectural enhancements
have been an area of active research and development over
the past few years [4], [31], [32], [55]. Recent work has
shown the benefits of programming paradigms built around
replicating data structures across GPUs and performing up-
dates via proactive peer-to-peer (P2P) stores [31], [32]. Such
paradigms enable reads to be performed locally during compu-
tation, eliminating inter-GPU transfers from the critical path.
Proactive peer-to-peer stores are efficient, as they do not stall
the issuing GPU core. They provide a natural overlap of
program compute and communication, which is necessary to
keep the GPU compute cores fully occupied. P2P stores also
maintain a familiar shared-memory programming model and
fall within the standard GPU memory consistency model, thus
maintaining easy programmability when porting applications
from one to many GPUs.

However, as shown in Figure 1, the primary drawback
to programming with peer-to-peer stores is that it results in
transfers at sub-cacheline granularity for irregular applications.
We profiled multiple applications (described in Section V)
and found that on average over 63% of inter-GPU transfers
initiated by P2P stores carry a payload smaller than 32B;
drastically smaller than the typical granularity of DMA op-

1

Fig. 2: Percentage of useful bytes transferred vs. maximum
theoretical throughput, when varying the transfer size of peer-
to-peer stores. Measured in real systems up to 128B and
projected beyond because peer-to-peer stores never exceed
128B.

erations in GPU programs. This is mainly because stores in
such applications naturally scatter across different cache lines,
and remote stores do not undergo coalescing beyond L1, as
explained later in Section III.

Figure 2 shows the P2P store goodput (number of data
payload bytes divided by total bytes sent) of two common
GPU interconnect protocols, measured in real systems for
transfers up to 128B and then projected beyond1. Small P2P
stores that traverse the inter-GPU interconnect achieve poor
interconnect efficiency compared to full cache line (128B)
transfers and even more with respect to multi-KB DMA
transfers. Due to framing and link-level interconnect protocol
overheads, 32B transfers are roughly half as efficient as trans-
fers of 128B or larger. This efficiency loss is so dramatic that
even though P2P-store based application design can improve
communication and compute overlap, this gain can be more
than offset by the decrease in interconnect goodput, resulting
in a net performance loss. Thus, an ideal scalable multi-GPU
system should support both a programming model that enables
overlap of compute and communication while also achieving
high interconnect efficiency for both small and large transfers
alike.

We propose FinePack, a set of GPU architectural enhance-
ments that with minimal embedded interconnect protocol
support can improve the interconnect efficiency of fine-grained
peer-to-peer store operations for GPUs. By exploiting the
GPU’s weak memory model and the application’s spatio-
temporal locality at larger memory ranges (MBs-GBs), we
show that it is possible to dramatically improve small transfer
efficiency without requiring any changes to the programmer’s
software interface for peer-to-peer stores. Fundamentally,
FinePack temporarily buffers peer-to-peer stores before they
are issued over the interconnect, aggregates multiple stores
between the same source-destination GPU pair, and efficiently

1Note that NVLink may or may not send a byte enable flit based on data
size and alignment resulting in spikes in its measured goodput [10].

compresses and repacketizes the stores using base+offset com-
pression to minimize framing and link-level protocol overhead.
On the receiving side, write operations are disaggregated
before being forwarded to the target GPU’s memory system.
Both the sender and receiver GPU memory systems remain
unmodified; only the interface to the inter-GPU intercon-
nect is changed. All changes remain fully transparent to the
programmer. Through coalescing and compression, FinePack
drastically decreases both the protocol overheads of small
writes and wasted bandwidth arising from repeated issue of
remote stores to the same address.

Although small message aggregation has been previously
proposed in the context of HPC network optimization [37],
this work advances state of the art in multi-GPU systems and
interconnects with the following contributions:

• We identify the need for improving the efficiency of small
granularity stores with hardware support and show that
existing and emerging interconnects do not handle them
appropriately.

• We propose minor modifications to the existing link-level
PCIe interconnect protocol to significantly improve small
store efficiency. Our approach can also be applied to other
interconnect protocols.

• We design GPU architectural enhancements to deploy
FinePack while remaining fully transparent to the existing
GPU software interface and hardware memory system.

• Through simulation we show that, on a switched PCIe
4.0 interconnect with 4 GPUs, FinePack improves in-
terconnect efficiency by 3×, while providing an average
strong scaling performance of 2.4× over a single GPU,
capturing 71% of the available opportunity.

II. BACKGROUND

A. Multi-GPU Memory Management

Page Management: Single-node (i.e., single OS) multi-
GPU systems map the memory of all GPUs to a single shared
virtual address space. Programmers can perform page man-
agement either automatically through APIs such as NVIDIA’s
Unified Memory (UM) or manually via explicit page alloca-
tion, placement, and pinning. While UM offers a convenient
way to perform page placement, prior work has shown that
despite continued optimization, the cost of migrating pages
among GPUs (to optimize locality) is too inefficient to be
deployed in multi-GPU systems [1], [31]. Therefore, today
most high performance GPU program data structures are
allocated on a per-GPU basis and managed explicitly by
the programmer, without using UM-based page management.
Under this model, page migrations are absent unless explicitly
triggered by the programmer.

Data Replication for Locality Management: In multi-
GPU systems because a GPU’s local memory bandwidth is
orders of magnitude higher than to a remote GPU’s mem-
ory, performing remote reads during computation can stall
the compute pipeline and degrade performance. Therefore,
particularly for iterative applications, it is common practice

2

for developers to replicate read-write data structures across
multiple GPUs’ physical memory and transfer data within
the program execution to each GPU, thereby optimizing for
memory locality when later reads of this data can occur locally.
This way, compute kernels can perform loads from the replica
in high bandwidth local memory instead of waiting on slower
remote loads, significantly improving multi-GPU performance
in most cases.

Communication via Proactive Peer-to-Peer Stores: Using
replicated data structures requires a logical update protocol im-
plemented by the programmer to synchronize changes among
GPUs during each phase of computation. The traditional way
to perform such updates is via bulk-synchronous memcpy
operations at kernel boundaries; copying whole updated data
structures from each producer to the other replicas. However
these copies do not often overlap with computation, thus
hurting performance. When memory access patterns permit,
expert programmers can subdivide kernels and perform mem-
cpy operations in smaller pieces that can be overlapped and for
higher efficiency. This approach is challenging even for expert
programmers, because it typically requires strict partitioning
of the data structures into coarse grained independent pieces.

An alternative data movement approach that is gaining
attention involves the GPUs pushing data proactively to all
replicas using peer-to-peer stores as soon as the data is
generated. This can be done by having the program explicitly
not just update its own local copy of the data structure, but
also perform duplicate stores directly to the remote replicas.
When implemented correctly, GPUs perform loads only to
their local copy of each data structure, ensuring good memory
bandwidth utilization, while stores are propagated to replicas
concurrently with local computation, yet off the critical path of
the workload. The approach of using P2P stores to push data
into remote GPUs’ memory possesses a natural ability to over-
lap compute and communication with minimal programmer
effort. Though prior work [31], [32] has explored the benefits
of fine-grained peer-to-peer stores, they are not used widely
due to their performance limitations as described below.

GPU Memory Model and Coherence: The NVIDIA GPU
memory consistency model [35] prescribes rules regarding
the apparent ordering of GPU memory operations and the
values that may be returned by a read operation. GPU mem-
ory accesses are weak accesses by default, unless they are
atomic operations, fence operations, or they possess explicit
synchronization qualifiers. Also, the GPU memory model
only requires weak stores to be visible upon performing
synchronization or reaching the end of the kernel. Though
prior work [41] has proposed hardware coherence protocols
for multi-GPU systems, pages owned by a remote GPU are
not cached in a GPU’s local L2 cache today, so there is
no need for inter-GPU coherence traffic. When combined
with the visibility requirements for weak stores, this provides
FinePack the opportunity to coalesce, aggregate and reorder
stores before they reach the interconnect, while maintaining
full compatibility with the GPU memory model.

Sequence
Number

TLP
Header Data ECRC LCRCFraming Framing

1B 2B 16B 0-4096B 4B 4B 1B

(a) PCIe 4.0

CRC Transaction layer
header

Data link layer
header

Address
Extension

Byte
Enable Data

25b 83b 20b 128b 128b 0-256B

(b) NVLink 1.0

Fig. 3: The packet structure of two common GPU intercon-
nects.

B. Understanding GPU Interconnect Inefficiencies

If peer-to-peer stores are an ideal programming model for
multi-GPUs, but have not yet been adopted, we must under-
stand the factors limiting their performance within multi-GPU
systems. Because of their early presence in the marketplace,
PCIe [50] and NVLink [34] are the predominant interconnects
used for multi-GPU systems within a single node today

When considering the properties and interaction of GPU
programming systems with the protocols used for inter-GPU
communication today, we can quantify the sources of inter-
GPU interconnect bandwidth inefficiency into four categories.

• Protocol overheads: Interconnects form network packets
by combining a data payload with protocol headers.
These headers contain metadata to enable transaction
routing and provide different services such as flow con-
trol, QoS, reliability, etc. As shown in Figure 3, because
the header bytes in most packet formats are fixed, the
smaller the data payload, the worse the interconnect good-
put (fraction of useful data sent over the interconnect) will
be, as shown in Figure 2.

• Over-transfer of data: In situations where the program-
mer chooses to employ bulk DMA-based transfers at the
end of compute kernels and the kernels have performed
sparse updates to program data structures, it is difficult
for the developer to identify the precise subset of memory
locations that were updated. Hence, the programmer ends
up transferring unwanted data, i.e., data that was not
updated in the compute kernel and/or not consumed
by the target GPU. Moreover, DMA-based transfers are
typically initiated using software APIs which have to
go through many software layers (runtime, driver, etc.)
resulting in additional software overheads that become
cost prohibitive if the granularity of the data transfer is
small.

• Redundant transfer of data: When a programmer
performs peer-to-peer stores and these stores exhibit
temporal locality, many writes to a piece of data may
occur before the final value is produced. The value of
a given memory location is only known to be final
when the program reaches a synchronization barrier under
today’s weak GPU memory models. Until this barrier

3

Fig. 4: Average size of remote stores exiting GPU’s L1 cache.

occurs, sending multiple P2P stores to the same address is
redundant and results in wasted interconnect bandwidth.

• Data padding: In many interconnects, data is transferred
on the wire in units known as flits, which represent the
amount of data transferred per flow-control unit. When
the total payload size is not a multiple of the native flit
size the payload is often padded to match the native flit
size, resulting in additional wasted bandwidth. In this
work, we find this overhead is not one of the primary
sources of inefficiency but recognize it may need to be
considered when optimizing other protocols with large
flit sizes.

III. FINEPACK MOTIVATION

This work makes the important observation that by examin-
ing the stream of addresses in packets egressing one GPU on
the way to remote GPUs, there is good opportunity for both
compressing the packet headers and addresses and coalescing
redundant writes before these packets are sent out over the
interconnect. In this section, we explain how and why this
opportunity arises and how FinePack introduces optimizations
that take advantage of it to solve three of the four sources of
small packet inefficiency in multi-GPU systems today.

Inter-GPU network packets are formed from stores that
originate at the GPU’s SM (streaming multiprocessor) core and
are destined for memory physically located on another GPU.
Each store from an individual GPU thread will range from 1–
8B. If there is good spatial and temporal locality, the GPU’s
L1 cache will naturally coalesce memory accesses across a
warp or wavefront of 32 threads into a single memory access
of up to 128B2.

However, if no locality arises due to insufficient optimiza-
tion on the part of the programmer or the inherent nature of
the problem itself (e.g., in graph or sparse matrix algorithms),
no coalescing can be performed and accesses to a remote GPU
are sent over the interconnect with small payloads of 32B or
less. Testing shows that on all recent NVIDIA GPUs, writes to
peer GPU memory also do not get cached within the GPU’s

2These numbers come from NVIDIA GPUs but other GPU architectures
have similar characteristics.

Fig. 5: Spatial locality enables address compression by parti-
tioning the address into a base and offset format.

L2 before egress. This is because the GPU’s L2 today is a
memory-side cache which is the point of coherence for its
locally attached memory. NVIDIA GPUs also do not L2-cache
data read remotely from other GPUs because no multi-GPU
HW coherence is supported, though this is a subject of some
recent academic work [41].

Figure 4 shows the fraction of inter-GPU transfers egressing
the GPU’s L1 caches, broken down by size of transfer. Despite
intra-GPU coalescing of small writes occurring within both
the SM and L1 cache, many applications often emit sub-
128B communication. Due to the lack of caching or coalescing
beyond the L1 cache, these small writes are passed directly
to the network. Making things worse is the fact that because
physical address spaces today are commonly as large as 48–
64b, there is 6–8B of address information required to transfer
a full address along with each packet. All of these issues lead
to peer-to-peer stores being inefficient on today’s GPUs.

Figure 5 illustrates the basic premise on which FinePack is
based. When examining a stream of writes egressing a single
GPU and destined for a single remote GPU, we observe that
these writes exhibit spatial locality when considering limited
address ranges (tens of MB to GB). This allows FinePack
to combine multiple small writes (to different addresses) that
have redundant common address bits into a base plus offset ad-
dressing scheme to compress out redundant bits. Furthermore,
should any of these writes be destined for the same address,
the GPU’s weak memory model allows even more efficient
compression/coalescing by overwriting the data locally before
sending the packet out on the interconnect. Exploiting these
two properties via modest architectural modifications allows
fine grain P2P stores to achieve an interconnect efficiency
that rivals or exceeds that of bulk DMA memory copies and
overcomes the primary limitations for adopting P2P stores as
the preferred method of achieving strong multi-GPU scaling.

4

Sequence Number

TLP Header

Data

Framing

Type

Byte Enable

FinePack Payload
Base Address

ECRC

LCRC

Framing

Address
offset

Data
length Store

...

Address
offset

Data
length Store

Address
offset

Data
length Store

Fig. 6: FinePack packet structure embedded within PCIe.
Packet fields modified by FinePack are shown in green.

IV. FINEPACK DESIGN

The goal of FinePack is to transfer fine-grained stores across
the interconnect more efficiently. It does this by compressing
multiple individual transfers into one larger transaction. The
FinePack design consists of two primary components: logical
extensions to the interconnect transaction layer to define a
compressed store operation and the GPU microarchitecture
that coalesces transactions in a network-friendly manner. We
describe these two components in turn below.

A. FinePack Packet Structure

Figure 6 shows the logical FinePack packet structure em-
bedded within a PCIe packet. It is based on our insight
that for stores belonging to the same source-destination pair,
most of the interconnect’s transaction-layer fields are (or can
be made) identical without changing the stores’ semantics.
Thus, with a suitable mechanism to perform aggregation at
the sender and disaggregation at the receiver, the common
header fields of many stores need to be transmitted only once,
thus saving interconnect bandwidth. In effect, FinePack allows
stores to share framing and transaction layer header fields
across otherwise independent stores.

In FinePack for PCIe, the existing transaction layer protocol
(TLP) header fields retain their original meanings and are
largely unchanged. However, the payload of our new trans-
action type now comprises multiple sub-packets concatenated
within a single transaction. Each sub-transaction contains a
new header that encodes specifics about the sub-packets that
differ from the outer transaction, specifically, a compressed
address and the size of the sub-packets payload for each
individually packed store.

Table I enumerates the fields in the outer PCIe TLP packet3.
Among the required fields of the PCIe TLP, all fields except
the address, data length, and byte enables can be made
common for stores having the same source and destination.
We repurpose an unused encoding in the type field to indicate
the new FinePack transaction type. The address field in the
outer TLP packet signifies a base address for all FinePack

3We use PCIe as an example but other interconnect transaction layers, such
as NVLink, are similar.

Bits Field Use in FinePack outer packet
10 Length Total length of FinePack payload
2 Attribute Standard PCIe meaning
1 Error/Poisoned Standard PCIe meaning
1 TLP Digest Standard PCIe meaning
3 Traffic Class Standard PCIe meaning
5 Type Encoding indicating FinePack
2 Format Standard PCIe meaning
4 First BE 0 (Not needed by FinePack)
4 Last BE Set relative to FinePack payload
8 Tag Standard PCIe meaning

16 Requester ID Standard PCIe meaning
62 Address FinePack payload base address
— Data FinePack payload

TABLE I: PCIe transaction layer protocol (TLP) header fields,
as interpreted for FinePack packets. Most fields retain their
standard meaning. FinePack-modified fields are shown in bold

Sub-transaction header bytes
2 3 4 5 6

Length field bits 10 10 10 10 10
Address field bits 6 14 22 30 38
Addressable range 64B 16KB 4MB 1GB 256GB

TABLE II: The number of bytes used for sub-transaction head-
ers is a tradeoff between more overhead per sub-transaction
header and more addressable range per outer transaction.

sub-packets. The length field now represents the cumulative
length of the FinePack sub-packet and can be used for buffer
management by the reciever. The byte enable fields are unused
for the FinePack transaction type because the length of each
individual write within the FinePack packet has its width
specified within the sub-header.

Each FinePack sub-transaction header consists of an address
component and data length component. The address field
represents an offset that is added to the base address in the
outer TLP packet header. The length field describes the length
of the inner transaction payload. Although the PCIe header
address and length fields are 4B-aligned, the FinePack inner
transaction format uses 1B-aligned address and length fields
to more flexibly support small writes.

The number of bits reserved for addresses and data lengths
in the sub-transaction header format is a design parameter that
can be adjusted for different manifestations of FinePack. For
the evaluation in this paper, we have swept the header size
across different byte counts as shown in Table II. In all cases,
ten bits are reserved for the length field (similar to the PCIe
protocol) and the remaining bits are used as address offsets.
As our results later confirm, 4–5 bytes for the sub-transaction
offset (corresponding to 4MB or 1GB of addressable range
per sub-packet, respectively) is often the sweet spot between
having reasonable overhead per sub-transaction header while
still allowing a significant addressable range within the bound-
aries of the outer transaction. A FinePack augmented PCIe
implementation consumes buffers and credits the same way a
variable length memory write transaction is currently specified
on PCIe without change. Also, FinePack optimizes only the

5

Fig. 7: Overview of the FinePack architecture.

transactions sent by FinePack-aware endpoints in the network
and does not impact other PCIe devices connected to switches,
or the switches themselves. In FinePack-enabled systems, the
CPU’s root complex and switches can still send packets over
the interconnect unmodified.

B. FinePack Architectural Components

The overall architecture is shown in Figure 7. Our hardware
proposal comprises three major components. First is a remote
write queue that collects outgoing GPU stores at the GPU’s
network egress port and buffers them in an attempt to combine
them into larger transactions. Second, is a packetizer to re-
packetize the combined stores before sending them to the
network using the extended TLP packet format described
in Section IV-A. Third, is a de-packetizer at the destination
GPU’s ingress network port to break the aggregated transaction
into individual stores before issuing them to the local memory
system. We describe each FinePack component in turn below.

Remote Write Queue: The remote write queue is a new
dedicated SRAM structure placed between the intra-GPU
crossbar and the GPU’s network egress port. It buffers out-
bound remote store transactions such that (1) multiple stores
to the same address are overwritten in the queue and only the
most recent store to a given address at the time of flushing is
transferred to the peer (2) As long as the maximum remote
queue size and the maximum PCIe payload size are not
exceeded, stores within the address window (determined by the
address base and the range of address offset) are accumulated
so that the packetizer module can repacketize the stores into
the FinePack packet format.

The remote write queue is partitioned across the total
number of destination GPUs in the system so that stores
targeting each GPU can be coalesced independently. The
logical operation of each partition is shown in Figure 8.
Within each partition, the SRAM is organized as a fully-
associative structure indexed by memory address at 128B

granularity. Each entry holds an address tag, 128B of data,
and a byte-enable bit for each byte. Separate registers store
FinePack configurations, namely, the number of base address
bits, number of address offset bits, FinePack sub-header size
and the maximum permissible payload size. The sub-header
size depends on the number of address offset bits and the
maximum payload size, as shown in Table II. An available
payload length register is present per partition to keep track
of the payload length of the packet to ensure it doesn’t exceed
the maximum length supported by the interconnect. Thus if
the available payload length register is equal to the maximum
packet length supported by the interconnect, then the queue
partition is empty and if it is zero, then the queue partition
is full. The remote write queue also contains counters to
keep track of the number of stores present in each partition
at a given instant. A separate set of registers also hold the
base address per partition. During initialization, the available
payload length register of all partitions are set to the maximum
payload length and the base address registers are set to
UINT64 MAX.

Stores destined to the same remote GPU are coalesced in an
individual partition. When the first store arrives at a partition,
its base address register is set to the address of the store right
shifted by the number of address offset bits. The available
payload length register is decremented by the sum of store
length and the FinePack sub-header size. When a store arrives
at a non-empty partition, the queue checks (1) if the address
of the incoming store falls within the window of

[base address,base address + 2num address offset bits),

and (2) the sum of the incoming store length and FinePack sub-
header size will not exceed the value of the available payload
length register. If these two conditions are not satisfied, the
current contents of the queue partition are flushed and passed
to the packetizer and the incoming store becomes the first store
of the queue partition. On the other hand, if the two conditions

6

Fig. 8: FinePack remote write queue partition design. Every GPU will have one such partition per destination GPU.

are met, the queue partition performs an associative lookup to
check if the incoming store address matches the value of an
existing address tag. If there is a match indicating a queue
hit, then the byte mask of the incoming store is ORed with
the existing bytemask of the queue entry. The payload length
register is updated to reflect the change. The incoming store
will also overwrite the valid data bits of the corresponding
queue entry. In case of a miss, the store creates a new entry
in the queue partition, updates the byte mask and the payload
length register. This matching logic can be realized through
an FSM in hardware.

To ensure that the remote write queue partitions buffer
sufficient data to target reaching the PCIe maximum payload
size of 4kB, they are sized to 64 entries of 128B each which
consumes 48kB total storage on a 4-GPU system (not counting
tags or byte enables). This size can be easily accommodated
on a GPU where each L1 cache is already hundreds of KB. For
instance, in GV100 the total cache size (L1 + L2) is 16MB.
48kB required by the remote write queue is just 0.3% of the
total cache capacity.

The entire remote write queue must be flushed upon re-
ceiving a system-scoped release operation such as a memory
fence or the end of a kernel’s execution. In GPU memory
consistency model terminology, system scope refers to syn-
chronization applied with respect to all devices in the system,
and release operations refer to the synchronization performed
by a producer when synchronizing its data with some other
consumer. A GPU release operation requires the hardware
implementation to flush in-flight stores to the point at which
they become visible to all threads participating in the specified
scope. As such, flushing the remote write queue upon receiving
a system-scoped release operation ensures that the FinePack
scheme remains compatible with the GPU’s memory consis-
tency model. Note that when latency or burstiness of inter-
GPU interconnect traffic constrains performance, the queue
can be flushed after an inactivity timeout. However, we chose

not to implement such timeouts to maximize the coalescing
window and because flushing the queue when it becomes full
was sufficient to maintain good link utilization.

To ensure same-address load-store ordering is maintained,
a load operation to remote memory with an address that
matches a write in the packetizer or remote write queue must
flush any matching stores currently queued in the remote
write queue. These stores can be flushed individually, or load
hits can trigger a flush of the remote write queue just as a
synchronization operation would. We did not evaluate this
tradeoff further as, by design, our workloads use only remote
stores and local loads.

Packetizer: The packetizer receives the entries flushed from
a remote write queue partition and converts them into sub-
packets in the FinePack format described in Section IV-A.
Each individual remote write queue entry may need to be
split into multiple sub-packets if the enabled bytes are not
contiguous, as the sub-transaction header does not contain
byte-enables. This set of sub-packets is then concatenated into
the data payload of the outer FinePack transaction embedded
into PCIe and transferred to the interconnect.

De-packetizer: When a FinePack packet reaches the des-
tination GPU, the de-packetizer disaggregates the stores into
individual memory transactions before forwarding them into
the GPU’s memory system. The de-packetizer modifies the
address field of each disaggregated packet by adding the offset
from the sub-transaction header to the base address in the PCIe
header. The de-packetizer must also include a 64 entry buffer
of 128B each, because the deaggregated transactions cannot
typically be consumed in the same cycle by L2.

No other changes are needed to the GPU architecture.

C. Discussion

Effect of Small Accesses on Local Memory Band-
width: Although FinePack ensures reduced overheads on the
inter-GPU interconnect, the communication to and from the

7

GPU’s local memory within the GPU still occurs as sub-
cacheline transfers. In general, the GPU’s last-level cache and
HBM/DRAM have enough bandwidth to match or exceed the
rate at which stores can arrive from the inter-GPU intercon-
nect.

Applicability to Read Accesses and Atomics: FinePack
focuses on improving interconnect efficiency for applications
that adopt a peer-to-peer store programming model for com-
munication. In those applications, proactive data transfers via
stores ensures that subsequent loads complete locally without
having to traverse the interconnect on the critical path. Because
on-demand loads stall the GPU threads issuing them, perform-
ing FinePack optimizations for loads could exacerbate their
latencies and harm application performance. Hence, FinePack
performs aggressive packing and coalescing only for stores.

When remote atomic operations are issued, they are not
coalesced and instead flush the previous entry with the same
address in the remote write queue. However, atomic coalescing
hardware has been previously proposed [9] and could be
explored in the future.

Base Address Alignment: As described in Section IV-B,
FinePack sets the base address of the remote write queue to the
address of the first incoming store, with the low-order bits cor-
responding to the FinePack sub-transaction addressable range
(Table II) masked off. This mechanism is simple, but may not
be optimal if a data structure straddles an alignment boundary
matching the addressable range. There are multiple ways to
solve this. One approach is to use a more sophisticated remote
write queue design that dynamically calculates the address
range spanned by all currently queued stores. An alternative
design might maintain multiple open outer transactions for
each target GPU so that accesses to data structures spanning
two aligned regions do not thrash the remote write queue. The
simplest approach is to set the base address using the upper
bits of the address of the first store arriving at a partition.
We evaluated the simplest approach to avoid unnecessary
complexity and because the issues described here did not arise
as first-order concerns in practice.

Partitioning of the Remote Write Queue: The remote
write queue is partitioned to coalesce stores with the same
destination. This can be done in multiple ways. In our
evaluation, we set the number of partitions as the number
of destination GPUs and designed the queue partitions to
hold 4KB data addressed at 128B granularity (the maximum
PCIe payload size). However, the size could be adjusted as
performance needs dictate. If in larger systems it becomes
too expensive to allocate the required storage, FinePack can
scale down gracefully as the number of remote write queue
entries dedicated to each destination GPU shrinks. It is also
possible to allocate more than one buffer partition per remote
GPU to avoid thrashing, at the cost of fewer entries per
any individual partition. More sophisticated designs might
construct the SRAM with fully dynamic allocation, rather
than partitioning the capacity in advance. We leave further
exploration of such fine-tuning for future work.

GPU Parameters
Cache block size 128 bytes
Global memory 16 GB

Streaming multiprocessors (SM) 80
CUDA cores/SM 64

L2 Cache size 6 MB
Warp size 32

Maximum threads per SM 2048
Maximum threads per CTA 1024

FinePack Structures
Remote write queue 192 entries

Remote write queue entry size 144 bytes
Base address register 8 bytes

PCIe maximum packet size 4096 bytes
FinePack subheader size 5 bytes

FinePack subheader address offset 30 bits

TABLE III: Simulation parameters, based on NVIDIA GV100.

Compatibility with Memory Ordering Rules: Although
the FinePack write queue reorders store operations, the GPU’s
weak memory model permits accesses to non-overlapping
addresses to be reordered freely (assuming there is no syn-
chronization in between). PCIe requires store TLPs to remain
in order, so same-address ordering is maintained throughout.
All other buffers and caches are unaffected by FinePack.

Applicability Beyond PCIe: Without loss of generality,
we will focus on PCIe for our evaluation, though the tech-
niques we have described will generalize to other common
protocols such as NVLink or CXL. CXL for example reuses
and extends PCIe, and thus FinePack is directly applicable.
NVLink however uses byte enable fields for the entire payload
and would likely would require slightly different encodings
of the FinePack payload within the outer transaction. While a
detailed specification for all inter-GPU protocols is beyond the
scope of this work, we note that the small packet efficiency
of PCIe and NVLink is similar for sub-cache line stores and
the general approach of compressing multiple small stores
into a single larger payload within an outer transaction should
achieve similar benefits.

V. EXPERIMENTAL METHODOLOGY

We evaluate FinePack by extending the NVIDIA Archi-
tectural Level Simulator (NVAS) [47] comprising a system
of four NVIDIA GV100 GPUs connected over existing and
projected PCIe generations with bandwidths ranging from
32GB/s for PCIe 4.0 to 128GB/s for PCIe 6.0. NVAS is a
trace- and execution-driven multi-GPU simulator that exhibits
good simulation fidelity without sacrificing speed and has been
correlated across a wide range of benchmarks. We collect
application traces at the GPU assembly level using NVBit [48]
and replay these traces in the simulator. These traces contain
CUDA API events, GPU kernel instructions, and memory
accesses. The simulator models execution timing when re-
playing these traces. All timing aspects including remote store
timings and subsequent dependencies are modeled within the
simulator. To simulate the PCIe interconnect, we model the

8

protocol packetization overheads and interconnect bandwidth
numbers from the available PCIe specifications.

Our FinePack implementation in NVAS is configured with
the parameters listed in Table III and evaluated on a suite of
multi-GPU applications described below:

Jacobi: The Jacobi solver is an iterative algorithm used
widely in numerical analysis to solve strictly diagonally dom-
inant systems of linear equations [51]. The algorithm solves
linear equations of the form Ax = b, where A is the coefficient
matrix, b is an input vector, and x is the solution vector. For our
evaluations we chose synthetically generated banded matrices
which arise widely in finite element analysis as the coefficient
matrix. On multi-GPU systems, the boundary values are shared
with the neighbors; the communication pattern is peer-to-peer.

Pagerank: Pagerank algorithm is used for ranking web-
pages by assigning a ‘Pagerank score’. Our implementation
computes pagerank as an iterative, synchronous series of
matrix-vector operations [52]. We evaluate pagerank on the
Cage matrix [13]. Pagerank is an irregular application whose
communication patterns vary based on the input dataset. For
the chosen dataset, the communication pattern is peer-to-peer.

SSSP: Single Source Shortest Path (SSSP) algorithm com-
putes the shortest path from a chosen location to the remaining
locations in a dataset. We implement the Bellman-Ford variant
of SSSP [53] on the indochina dataset [13]. SSSP is also an
irregular application whose communication pattern is input
dependent. For the indochina dataset we used for evaluation,
the predominant communication pattern is many-to-many.

ALS: Alternating Least Squares (ALS) is widely used in
recommender systems to iteratively factorize a rating matrix
into a user matrix and an item matrix. Every iteration consists
of two sub-iterations where the algorithm fixes the user or item
matrix and optimizes the other [45]. We perform ALS on the
rgg dataset [13], and the communication pattern is all-to-all.

CT: Our CT benchmark performs Model Based Iterative Re-
construction (MBIR), a computational technique used widely
for low-dose CT scans. The algorithm we study is similar
to that used in the FDA-approved GE Veo CT system and
communicates with peer GPUs via all-to-all transfers [27].

EQWP: We also evaluate EQWP, Diffusion and HIT
from the Tartan benchmark suite [23] because their strong
scaling performance is bound by inter-GPU communication.
EQWP [24] is a 3D Earthquake Wave Propagation model
simulation and is based on 4-order finite difference method.
In each iteration, each GPU exchanges halo regions with its
neighbors and the communication pattern is peer-to-peer. We
modify the application to replace MPI-based communication
with the different communication paradigms we evaluate.

Diffusion: Diffusion [14], the second application we eval-
uate from Tartan benchmark suite [23] simulates the Heat
Equation and Inviscid Burger’s equation. Similar to EQWP,
each GPU performs halo exchange with neighbors in each
iteration via peer-to-peer transfers and we modify the code
base to only replace MPI based communication with the
paradigms under study.

Fig. 9: 4-GPU speedups over a single GPU for different
paradigms.

Hit: HIT [26], the final application from the Tartan suite
computes Homogeneous Isotropic Turbulence as a series of
FFT operations. It partitions the dataset along X-axis, trans-
poses the coefficient matrix before/after FFT and communi-
cates via all-to-all transfers.

For each multi-GPU application we evaluate two func-
tionally equivalent implementations that maintain the same
data and work sharing characteristics across GPUs, but use
the memcpy and peer-to-peer store paradigms, described in
Section III. FinePack works transparently, optimizing the peer-
to-peer store paradigm to provide a more efficient bandwidth
utilization. To establish an upper bound for the potential bene-
fit of FinePack, we also compare it with a system with infinite
inter-GPU bandwidth. We modeled this system by analytically
eliding the data transfer time during an application’s execution
when using the memcpy paradigm.

VI. RESULTS

We now examine the performance of FinePack on a multi-
GPU system as described in Section V.

A. Performance Results and Characterizations

Figure 9 shows the speedup of using various multi-GPU
communication paradigms on a four GPU system normalized
to the performance of a single GPU baseline. The infinite
bandwidth bar shows the total opportunity available via op-
timizing inter-GPU communication and on average it is 3.4×,
indicating the highly parallel nature of these workloads. Peer-
to-peer stores achieve considerable speedups in regular appli-
cations (Jacobi, diffusion) where the store granularity is 128B
but performs poorly for others resulting in a net slowdown
over a single GPU. Bulk DMA achieves a 2.1× performance
improvement over peer-to-peer stores due to lower protocol
overheads but is still 1.4× slower than FinePack.

Figure 10 provides a breakdown of the interconnect effi-
ciency of the three studied inter-GPU communication schemes.
As the figure shows, the bulk DMA paradigm results in
negligible protocol overheads due to the coarse granularity
of transfers. Despite low protocol overheads, the memcpy

9

Fig. 10: Breakdown of total bytes transferred over the inter-
connect, normalized to inter-GPU bulk DMA. These bytes
are categorized into ‘Useful bytes’, which are read by the
destination GPU, ‘Protocol overhead’ which is the number
of bytes required to perform all transfers, and ‘Wasted bytes’,
which is bytes transferred that are never read or are overwritten
by the source GPU.

paradigm suffers due to (1) its inability to overlap compute and
communication, and (2) transfer of data that was not updated
by the source and/or not accessed by the destination results
in high percentage of wasted bytes. This leads to performance
degradation compared to FinePack as shown Figure 9 and it is
difficult to eliminate due to the coarse-grained nature of this
paradigm.

P2P stores achieve a good overlap of compute and com-
munication, but also exhibit poor performance as shown in
Figure 9 due to the large protocol packetization overheads
of the fine-grained transfers as well their inability to exploit
temporal locality. P2P stores also suffer from wasted bytes
due to the transfers of multiple stores to the same address.
Figure 10 shows that these factors result in the total data
transferred often being an order of magnitude higher than the
amount of data transferred by the memcpy scheme.

FinePack on the other hand, transfers 2.7× less data than
peer-to-peer stores and 1.3× less data than bulk DMA as
shown in Figure 10. This savings along with FinePack’s ability
to efficiently overlap compute and communication results in a
mean performance improvement of 1.4× over bulk DMA and
3× over peer-to-peer stores as shown in Figure 9. We also
note that FinePack results in a 24% reduction of data on the
wire versus write combining alone.

Figure 11 shows the average number of stores that are co-
alesced in the FinePack packetization buffer before egressing
the source GPU. We observe that FinePack is able to pack
42 stores on average into a single transaction before sending
it to the interconnect, thus leading to the protocol overhead
reduction shown in Figure 10. CT is a notable outlier from
the trend and is able to pack fewer stores on average because
the individual stores exhibit minimal spatial locality and thus
FinePack does not outperform bulk DMA. Nevertheless, it
still achieves good scaling as shown in Figure 9, because the
application is not severely bandwidth bound.

Fig. 11: Average number of stores aggregated in a single
packet by FinePack.

Fig. 12: FinePack performance sensitivity to variation of sub-
header bytes.

Understanding Address Compression Tradeoffs: One of
the important design decisions that has to be made when
considering the FinePack optimization is how to sub-divide
the store address into the address base and offset fields. As
discussed in Section IV, the number of bytes in the sub-
transaction header address field presents a tradeoff: as more
address field bytes are used, more stores can be compressed
into a single large transaction but the overhead of each sub-
transaction grows. Figure 12 shows that application perfor-
mance grows upon increasing the sub-transaction header bytes
and reaches the maximum at 4 sub-transaction header bytes,
with virtually no change at 5 bytes. For our applications, 4
bytes (meaning 4MB coalescing regions) appears to be suffi-
cient to capture majority of the data communication patterns
within the workloads. However, beyond 5 bytes, performance
begins to decrease because the protocol overhead grows, yet
additional stores cannot be accommodated in a single packet
because FinePack hit the maximum payload size limit. While
there is variation among workloads, we observe that 4-5 sub-
transaction header bytes works well across all applications.
We choose to use 5 bytes in our evaluations.

10

Sensitivity to Interconnect Bandwidth: Figure 13 shows
the geometric mean performance gains of FinePack over
bulk DMA and peer-to-peer stores when increasing the inter-
GPU bandwidth, while leaving GPU’s compute capabilities
constant. We observe that bulk DMA and peer-to-peer store
designs improve performance significantly with each step in
bandwidth. However, at no step (until bandwidth is unlimited)
do they achieve the performance of FinePack.

Though inter-GPU interconnect bandwidth will grow, we
expect it to remain magnitudes lower than the local memory
bandwidth even in future multi-GPU systems where HBM
bandwidth is also growing each generation.

B. Discussion

Alternate FinePack Designs: As a part of this work, we
performed opportunity studies evaluating an alternate design
where protocol overheads are minimized by separating the
base address and other common fields into a special PCIe
configuration packet. This packet defines the characteristics
for store-packets that follow it, until the next configuration
packet is received, in a stateful manner. In principle, this is
similar to virtual circuit networks where the path taken by the
first packet is assigned to all packets succeeding it.

Our analytical modeling showed that the protocol overhead
reduction is not as efficient as FinePack when using this
alternative. FinePack packs multiple stores as sub-transactions
within a single PCIe packet, thus needing just one common
sequence number, ECRC, and LCRC per packet. In a stateful
config-packet design, though the common header fields across
multiple stores are sent as a single configuration packet, the
stores that succeed remain independent PCIe packets, requiring
their own sequence number and CRC fields, which produce an
additional 10-byte overhead per store compared to FinePack.
For a packet containing 32-64 stores (FinePack typically
coalesces 42 stores before emitting a packet), this alternate
design is approximately 18% less efficient.

FinePack Overheads: Because FinePack overheads are
incurred only on the store side, for an application with P2P
store programming model, they do not fall on the critical path
of compute execution. Our simulator model includes all the
overheads incurred by FinePack. The cost to flush a remote
write queue at the synchronization barriers will be dwarfed
by the cost of the synchronization barrier itself. The area
requirement for FinePack remote write queue is less than
0.05% of the area of existing caches in NVIDIA’s recent
GA100 GPU. Even on a 16 GPU system, the total remote write
queue partition size is 120kB per GPU, which is dwarfed by
the L2 size (40MB).

Comparison with Other Proactive GPU Transfer Sys-
tems: GPS [31] is a recent hardware-software co-designed
solution that maintains duplicate physical replicas of the
shared memory pages in the local memory of each GPU,
updates these replicas via proactive stores, and employs a
dynamic unsubscription technique to eliminate traffic to un-
used replicas. GPS also includes a write combining buffer, but
because it performs coalescing at the cacheline granularity, it

Fig. 13: Performance sensitivity to interconnect bandwidth.
PCIe6 bandwidth is similar the the highest performance
NVLink interconnects available today.

cannot achieve good coalescing for highly divergent stores and
still suffer from small store network inefficiency. In addition,
it requires programmer effort to identify the profiling region
and requires the programmer to port their application to new
memory management APIs. While effective, it does require
changes to the GPU’s core virtual memory architecture to be
implemented efficiently. We directly compared FinePack to
GPS for individual applications that had the same reference
implementation. We found that for applications where the sub-
scription benefits in GPS are able to offset the low efficiency
(due to unneeded transfers within a cacheline), GPS performs
best. In other workloads where these unneeded transfers result
in larger inefficiencies, FinePack performs better than GPS,
while requiring no application porting to utilize a new GPU-
only centralized memory subscription mechanism. On average,
across our evaluated workloads we find FinePack is 17.8%
slower than GPS on a 4-GPU PCIe system, however FinePack
is a significantly simpler modification to the GPU’s architec-
ture and remains fully transparent to the programmer without
need for new special libraries or API usage. We note that GPS
and FinePack are not mutually exclusive; they could serve as
complementary optimizations in future systems.

Scaling beyond 4 GPUs: As the number of GPUs in the
system increases, the SRAM storage required for FinePack’s
remote write queue will also increase per addressable peer
GPU in the system. If the store buffer size becomes a first
order design constraint (note that GPU L2 caches are tens of
MBs in recent GPUs), the size of the per GPU buffer could be
reduced to limit the number of entries. The impact of reducing
the maximum coalescing size is left for future work however.
At larger GPU counts, we expect both the average store size to
remain similar to that shown in Fig. 4 and the address locality
that is exploited by FinePack to remain largely intact because
scaling an application across GPU counts does not change
the address access patterns within the small time windows
that FinePack operates. On a 16-GPU system connected via a

11

projected PCIe 6.0 interconnect, FinePack outperforms peer-
to-peer stores by 3× and bulk DMA by 1.9×, without affecting
the programming model, GPU runtime, or inflicting invasive
changes on the GPU memory system.

VII. RELATED WORK

Small message aggregation: Small message aggregation
to improve network efficiency has been proposed both at the
software and hardware level. There are a variety of software
approaches, ranging from runtimes [30], [49], to compilers [2],
or application level optimization [7]. All these approaches
suffer from non-negligible software overheads and incur extra
transmission latencies. For this reason they typically require
additional mitigation mechanisms (such as multi-threading)
or limit their applicability to specific domains. A particularly
successful use case of software based network aggregation is
the acceleration of collective communication [19]. Gravel [36]
performs message aggregation in an external CPU managed
queue and is intended for Ethernet/infiniband networks at large
communication sizes, where as FinePack performs coalescing
and address compression within the GPU before injecting the
data into the network.

Network level approaches to aggregation [8], [18] are de-
signed as part of the network routers and aggregate messages
as they travel within the network. They are transparent to
the user and application while providing benefit because
the routers can inexpensively monitor the effectiveness of
the aggregation and use it as needed. Our work proposes
an application transparent, endpoint based approach that is
also transparent to the network itself, as it logically sits at
the interface between the GPU and the network ports. Our
approach is based on the aggregation of memory references
following a scheme that is reminiscent of that found inside
compressing TLBs [29], [42], [54] as a way improve virtual
address space coverage while requiring a smaller number of
TLB entries.

Multi-GPU performance: PROACT [32] is a joint compile
and runtime system that intelligently orchestrates shared data
in multi-GPU systems via proactive transfers. It fine-tunes
inter-GPU data movement for the application’s needs, also
achieving the interconnect efficiency of bulk transfers while
maintaining the programming simplicity of peer-to-peer stores.
However PROACT requires per-application profiling and pro-
gram re-writes to integrate its framework into each application.
FinePack on the other hand, is completely programmer trans-
parent and offers significant performance gains without the
need for profile driven optimization.

Prior work [3], [4], [6], [20], [28], [55] explores other
mechanisms both at the HW and SW levels to improve the
performance in multi-GPU systems. Our work adds to this
by exploring optimizing small access efficiency to enable
strong scaling in multi-GPU systems. Some work [40], [41],
[44] has also proposed techniques for inter-GPU coherence.
FinePack avoids an expensive coherence protocol while also
maintaining GPU memory model compatibility. Several works
propose multi-GPU memory management solutions. Griffin [4]

optimizes page migration to improve multi-GPU performance
and CARVE [55] caches remote data in local DRAM to
improve locality. Prior work [46] explores the existence of
common data patterns and the use of memory compression
algorithms to save bandwidth and hence improve performance
in multi-GPU systems. It is orthogonal and complementary to
FinePack.

NUMA memory management: Dashti et al. [12] develop
a Linux memory placement algorithm for mitigating address
traffic congestion in NUMA systems and there is significant
prior work [1], [15], [21], [39], [56] performing NUMA-
aware optimizations for CPU based systems. Others have also
explored techniques that require new hardware-based peer
caching for GPUs [5], [11], [25], [38], [43].

VIII. CONCLUSION

Performing fine-grained writes to other GPUs’ memories is
a natural paradigm for programming multi-GPU systems. Un-
fortunately due to interconnect inefficiency, GPU programmers
today are forced to either suffer through poor performance
when using P2P stores or artificially aggregate data updates
into program phases that kill communication and computation
overlap. FinePack provides the best of both worlds through
repacketization of fine-grained transfers to eliminate protocol
overhead and aggressive coalescing to reduce redundant data
transferred over the inter-GPU interconnect. By leveraging the
locality inherent in the physical address stream egressing a
single GPU, bound for a single destination GPU, FinePack is
able to achieve a 2.7× efficiency improvement over peer-to-
peer stores that translates into an average program speedup
of 3×. We believe techniques such as FinePack that rely on
hardware innovations while remaining transparent to the appli-
cation developer (to ease development overhead) are essential
for realizing scalable multi-GPU systems in the future.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their valuable
feedback. This work was supported in part by the Center
for Applications Driving Architectures (ADA), one of the
six centers of JUMP, a Semiconductor Research Corporation
program co-sponsored by DARPA.

REFERENCES

[1] N. Agarwal, D. Nellans, M. Stephenson, M. O’Connor, and S. W.
Keckler, “Page Placement Strategies for GPUs Within Heterogeneous
Memory Systems,” in International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS), 2015.

[2] M. Alvanos, M. Farreras, E. Tiotto, and X. Martorell, “Automatic Com-
munication Coalescing for Irregular Computations in UPC Language,”
in Conference of the Center for Advanced Studies on Collaborative
Research(CASCON), 2012, pp. 220–234.

[3] A. Arunkumar, E. Bolotin, B. Cho, U. Milic, E. Ebrahimi, O. Villa,
A. Jaleel, C.-J. Wu, and D. Nellans, “MCM-GPU: Multi-Chip-Module
GPUs for Continued Performance Scalability,” in International Sympo-
sium of Computer Architecture (ISCA), 2017.

[4] T. Baruah, Y. Sun, A. Dinçer, M. S. A. Mojumder, J. L. Abellán,
Y. Ukidave, A. Joshi, N. Rubin, J. Kim, and D. Kaeli, “Griffin:
Hardware-Software Support for Efficient Page Migration in Multi-GPU
Systems,” in International Symposium on High Performance Computer
Architecture (HPCA), 2020.

12

[5] A. Basu, S. Puthoor, S. Che, and B. M. Beckmann, “Software Assisted
Hardware Cache Coherence for Heterogeneous Processors,” in Interna-
tional Symposium on Memory Systems (ISMM), 2016.

[6] T. Ben-Nun, M. Sutton, S. Pai, and K. Pingali, “Groute: Asynchronous
Multi-GPU Programming Model with Applications to Large-scale Graph
Processing,” Transactions on Parallel Computing (TOPC), vol. 7, no. 3,
pp. 1–27, 2020.

[7] V. G. Castellana, M. Drocco, J. Feo, J. Firoz, T. Kanewala, A. Lums-
daine, J. Manzano, A. Marquez, M. Minutoli, J. Suetterlein et al., “A
Parallel Graph Environment for Real-World Data Analytics Workflows,”
in Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2019.

[8] D. Chen, N. Eisley, P. Heidelberger, S. Kumar, A. Mamidala, F. Petrini,
R. Senger, Y. Sugawara, R. Walkup, B. Steinmacher-Burow et al.,
“Looking Under the Hood of the IBM Blue Gene/Q Network,” in
International Conference on High Performance Computing, Networking,
Storage and Analysis (SC), 2012.

[9] P. Dalmia, R. Mahapatra, and M. D. Sinclair, “Only Buffer When You
Need To: Reducing On-Chip GPU Traffic with Reconfigurable Local
Atomic Buffers,” in International Symposium on High-Performance
Computer Architecture (HPCA), 2022, pp. 676–691.

[10] J. Danskin and D. Foley, “Pascal GPU with NVLink,” in IEEE Hot
Chips 28 Symposium (HCS), 2016, pp. 1–24.

[11] M. Dashti and A. Fedorova, “Analyzing Memory Management Methods
on Integrated CPU-GPU Systems,” in International Symposium on
Memory Management (ISMM), 2017.

[12] M. Dashti, A. Fedorova, J. Funston, F. Gaud, R. Lachaize, B. Lepers,
V. Quema, and M. Roth, “Traffic Management: A Holistic Approach to
Memory Placement on NUMA systems,” in International Conference
on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013.

[13] T. A. Davis and Y. Hu, “The University of Florida Sparse Matrix
Collection,” ACM Transactions on Mathematical Software (TOMS),
vol. 38, no. 1, pp. 1–25, 2011.

[14] M. Diaz, “Multi-GPU (CUDA-MPI) Baseline Implementation of Heat
Equation and the Inviscid Burgers’ Equation,” https://github.com/wme7/
MultiGPU AdvectionDiffusion, last accessed on 12/05/2022.

[15] A. Drebes, K. Heydemann, N. Drach, A. Pop, and A. Cohen, “Topology-
Aware and Dependence-Aware Scheduling and Memory Allocation
for Task-Parallel Languages,” Transactions on Architecture and Code
Optimization (TACO), vol. 11, no. 3, pp. 1–25, 2014.

[16] F. N. Iandola, M. W. Moskewicz, K. Ashraf, and K. Keutzer, “Firecaffe:
Near-Linear Acceleration of Deep Neural Network Training on Compute
Clusters,” in Conference on Computer Vision and Pattern Recognition
(CVPR), 2016.

[17] Z. Jia, M. Zaharia, and A. Aiken, “Beyond Data and Model Parallelism
for Deep Neural Networks,” arXiv preprint arXiv:1807.05358, 2018.

[18] N. Jiang, L. Dennison, and W. J. Dally, “Network Endpoint Congestion
Control for Fine-Grained Communication,” in International Conference
for High Performance Computing, Networking, Storage and Analysis
(SC), 2015.

[19] L. V. Kalé, S. Kumar, and K. Varadarajan, “A Framework for Collective
Personalized Communication,” in International Parallel and Distributed
Processing Symposium (IPDPS). IEEE, 2003, pp. 9–pp.

[20] H. Kim, J. Sim, P. Gera, R. Hadidi, and H. Kim, “Batch-Aware
Unified Memory Management in GPUs for Irregular Workloads,” in
International Conference on Architectural Support for Programming
Languages and Operating Systems (ASPLOS), 2020.

[21] B. Lepers, V. Quéma, and A. Fedorova, “Thread and Memory Placement
on NUMA Systems: Asymmetry Matters,” in USENIX Annual Technical
Conference (USENIX ATC), 2015.

[22] A. Li, S. L. Song, J. Chen, J. Li, X. Liu, N. R. Tallent, and K. J.
Barker, “Evaluating Modern GPU Interconnect: PCIe, NVLink, NV-SLI,
NVSwitch and GPUDirect,” Transactions on Parallel and Distributed
Systems (TPDS), vol. 31, no. 1, pp. 94–110, 2019.

[23] A. Li, S. L. Song, J. Chen, X. Liu, N. Tallent, and K. Barker,
“Tartan: Evaluating Modern GPU Interconnect via a Multi-GPU Bench-
mark Suite,” in International Symposium on Workload Characterization
(IISWC), 2018.

[24] Z. Liu, “Efficient Large-scale Parallel Stencil Computation on
Multi-Core and Multi-GPU Accelerated Clusters,” https://github.com/
lzhengchun/b2r, last accessed on 12/05/2022.

[25] D. Lustig and M. Martonosi, “Reducing GPU Offload Latency via Fine-
Grained CPU-GPU Synchronization,” in International Symposium on
High Performance Computer Architecture (HPCA), 2013.

[26] M. Martın, “HIT: A Parallel GPGPU Code to Simulate Homogeneous
Isotropic Turbulence,” https://github.com/albertovelam/HIT MPI, last
accessed on 12/05/2022.

[27] M. G. McGaffin and J. A. Fessler, “Alternating Dual Updates Algorithm
for X-ray CT Reconstruction on the GPU,” IEEE Transactions on
Computational Imaging, vol. 1, no. 3, pp. 186–199, 2015.

[28] U. Milic, O. Villa, E. Bolotin, A. Arunkumar, E. Ebrahimi, A. Jaleel,
A. Ramirez, and D. Nellans, “Beyond the Socket: NUMA-aware GPUs,”
in International Symposium on Microarchitecture (MICRO), 2017.

[29] S. Mittal, “A Survey of Techniques for Architecting TLBs,” Concurrency
and Computation: Practice and Experience, vol. 29, no. 10, p. e4061,
2017.

[30] A. Morari, O. Villa, A. Tumeo, D. Chavarria Miranda, and
M. Valero Cortés, “GMT: Enabling Easy Development and Efficient
Execution of Irregular Applications on Commodity Clusters,” in In-
ternational Conference for High Performance Computing, Networking,
Storage and Analysis, (SC), 2013.

[31] H. Muthukrishnan, D. Lustig, D. Nellans, and T. Wenisch, “GPS: A
Global Publish-Subscribe Model for Multi-GPU Memory Management,”
in International Symposium on Microarchitecture (MICRO), 2021.

[32] H. Muthukrishnan, D. Nellans, D. Lustig, J. Fessler, and T. Wenisch,
“Efficient Multi-GPU Shared Memory via Automatic Optimization of
Fine-Grained Transfers,” in Proceedings of the 48th Annual IEEE/ACM
International Symposium on Computer Architecture (ISCA), 2021.

[33] NVIDIA, “NVLink AND NVSwitch The Building Blocks of Ad-
vanced Multi-GPU Communication,” 2019, nvidia.com/en-us/data-
center/nvlink/, last accessed on 08/17/2020.

[34] NVIDIA, “NVIDIA NVLink High-Speed GPU Interconnect,” 2020,
nvidia.com/en-us/design-visualization/nvlink-bridges/, last accessed on
08/17/2020.

[35] NVIDIA, “PTX: Parallel Thread Execution ISA Version 7.0,” 2020,
docs.nvidia.com/cuda/pdf/ptx isa 7.0.pdf, last accessed on 08/17/2020.

[36] M. S. Orr, S. Che, B. M. Beckmann, M. Oskin, S. K. Reinhardt, and
D. A. Wood, “Gravel: Fine-Grain GPU-Initiated Network Messages,” in
International Conference for High Performance Computing, Networking,
Storage and Analysis (SC), 2017.

[37] C. Pham, “Comparison of Message Aggregation Strategies for Par-
allel Simulations on a High Performance Cluster,” in International
Symposium on Modeling, Analysis and Simulation of Computer and
Telecommunication Systems (MASCOTS), 2000.

[38] J. Power, A. Basu, J. Gu, S. Puthoor, B. M. Beckmann, M. D. Hill,
S. K. Reinhardt, and D. A. Wood, “Heterogeneous System Coherence
for Integrated CPU-GPU Systems,” in International Symposium on
Microarchitecture (MICRO), 2013.

[39] I. Psaroudakis, T. Scheuer, N. May, A. Sellami, and A. Ailamaki,
“Scaling Up Concurrent Main-Memory Column-Store Scans: Towards
Adaptive NUMA-Aware Data and Task Placement,” in Proceedings of
the VLDB Endowment (PVLDB), 2015.

[40] X. Ren and M. Lis, “Efficient Sequential Consistency in GPUs via
Relativistic Cache Coherence,” in International Symposium on High
Performance Computer Architecture (HPCA), 2017.

[41] X. Ren, D. Lustig, E. Bolotin, A. Jaleel, O. Villa, and D. Nellans, “HMG:
Extending Cache Coherence Protocols Across Modern Hierarchical
Multi-GPU Systems,” in International Symposium on High Performance
Computer Architecture (HPCA), 2020.

[42] T. H. Romer, W. H. Ohlrich, A. R. Karlin, and B. N. Bershad, “Reducing
TLB and Memory Overhead Using Online Superpage Promotion,” in
International Symposium on Computer Architecture (ISCA), 1995.

[43] I. Singh, A. Shriraman, W. W. Fung, M. O’Connor, and T. M. Aamodt,
“Cache Coherence for GPU Architectures,” in International Symposium
on High Performance Computer Architecture (HPCA), 2013.

[44] A. Tabbakh, X. Qian, and M. Annavaram, “G-TSC: Timestamp Based
Coherence for GPUs,” in International Symposium on High Performance
Computer Architecture (HPCA), 2018.

[45] G. Takács and D. Tikk, “Alternating Least Squares for Personalized
Ranking,” in ACM Conference on Recommender Systems, 2012, pp. 83–
90.

[46] M. K. Tavana, Y. Sun, N. B. Agostini, and D. Kaeli, “Exploiting Adap-
tive Data Compression to Improve Performance and Energy-Efficiency
of Compute Workloads in Multi-GPU Systems,” in International Parallel

13

and Distributed Processing Symposium (IPDPS). IEEE, 2019, pp. 664–
674.

[47] O. Villa, D. Lustig, Z. Yan, E. Bolotin, Y. Fu, N. Chatterjee, N. Jiang,
and D. Nellans, “Need for Speed: Experiences Building a Trustworthy
System Level GPU Simulator,” in International Symposium on High
Performance Computer Architecture (HPCA), 2021.

[48] O. Villa, M. Stephenson, D. Nellans, and S. W. Keckler, “NVBit: A
Dynamic Binary Instrumentation Framework for NVIDIA GPUs,” in
International Symposium on Microarchitecture (MICRO), 2019.

[49] L. Wesolowski, R. Venkataraman, A. Gupta, J.-S. Yeom, K. Bisset,
Y. Sun, P. Jetley, T. R. Quinn, and L. V. Kale, “TRAM: Optimizing Fine-
Grained Communication with Topological Routing and Aggregation of
Messages,” in International Conference on Parallel Processing (ICPP),
2014.

[50] Wikipedia, “PCI Express,” 2005, https://en.wikipedia.org/wiki/PCI
Express, last accessed on 10/28/2021.

[51] Wikipedia, “Jacobi Method,” 2018, https://en.wikipedia.org/wiki/Jacobi\
method, last accessed on 02/12/2022.

[52] Wikipedia, “PageRank,” 2018, https://en.wikipedia.org/wiki/PageRank
last accessed on 02/12/2022.

[53] Wikipedia, “Bellman Ford Algorithm,” 2022, https://en.wikipedia.org/
wiki/Bellman\-Ford\ algorithm, last accessed on 02/12/2022.

[54] Z. Yan, D. Lustig, D. Nellans, and A. Bhattacharjee, “Translation
Ranger: Operating System Support for Contiguity-Aware TLBs,” in
International Symposium on Computer Architecture (ISCA), 2019.

[55] V. Young, A. Jaleel, E. Bolotin, E. Ebrahimi, D. Nellans, and O. Villa,
“Combining HW/SW Mechanisms to Improve NUMA Performance of
Multi-GPU Systems,” in International Symposium on Microarchitecture
(MICRO), 2018.

[56] K. Zhang, R. Chen, and H. Chen, “NUMA-Aware Graph-Structured
Analytics,” in Symposium on Principles and Practice of Parallel Pro-
gramming (PPoPP), 2015.

14

