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ABSTRACT

Suboptimal management of memory and bandwidth is one of the
primary causes of low performance on systems comprising mul-
tiple GPUs. Existing memory management solutions like Unified
Memory (UM) offer simplified programming but come at the cost of
performance: applications can even exhibit slowdown with increas-
ing GPU count due to their inability to leverage system resources
effectively. To solve this challenge, we propose GPS, a HW/SW
multi-GPU memory management technique that efficiently orches-
trates inter-GPU communication using proactive data transfers.
GPS offers the programmability advantage of multi-GPU shared
memory with the performance of GPU-local memory. To enable
this, GPS automatically tracks the data accesses performed by each
GPU, maintains duplicate physical replicas of shared regions in each
GPU’s local memory, and pushes updates to the replicas in all con-
sumer GPUs. GPS is compatible within the existing NVIDIA GPU
memory consistency model but takes full advantage of its relaxed
nature to deliver high performance. We evaluate GPS in the context
of a 4-GPU system with varying interconnects and show that GPS
achieves an average speedup of 3.0 relative to the performance
of a single GPU, outperforming the next best available multi-GPU
memory management technique by 2.3x on average. In a 16-GPU
system, using a future PCle 6.0 interconnect, we demonstrate a
7.9% average strong scaling speedup over single-GPU performance,
capturing 80% of the available opportunity.
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1 INTRODUCTION

Graphics Processing Units (GPUs) are central to high-performance
computing because of their high memory bandwidth and microar-
chitecture tailored for parallel execution. Because workload de-
mands continue to grow beyond what single-GPU performance
can provide, GPU manufacturers now offer systems comprising
multiple GPUs to continue scaling application throughput [5, 40].
These aggregated multi-GPU systems provide teraflops of compu-
tational power and many terabytes per second of memory band-
width [20, 42]. However, effectively managing these resources to
extract performance from a multi-GPU system remains a challenge
for many GPU developers.

One of the primary challenges to achieving scalable performance
lies in managing the order of magnitude gap between local and
remote memory bandwidths. If applications are naively partitioned
across GPUs, most memory accesses will traverse (relatively) slow
remote links, resulting in the inter-GPU interconnect becoming a
performance bottleneck. Figure 1 demonstrates that for a variety of
hard-to-scale HPC benchmarks on a 4-GPU system (see Section 6
for specifics), interconnect bandwidth limits scalability. A system
with infinite interconnect bandwidth and a system with projected
PClIe 6.0 performance attain 3X and 2X speedups over a single
GPU, respectively, while using a current PCle 3.0 interconnect can
result in application performance 30% slower than its single-GPU
counterpart.

The multi-GPU partitioning problem is difficult because the cur-
rent techniques available for developers to effectively manage data
in multi-GPU systems fall short. Unified Memory (UM) [21] pro-
vides a single memory address space accessible from any processor
in the system by employing fault-based and/or hint-based page
migration to move data pages to the local physical memory of the
accessing processor. Although this enables UM to automatically mi-
grate pages for locality, the page fault handling overheads are often
performance prohibitive. Some programmers therefore resort to
manual hints, but using hints effectively requires substantial tuning
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Figure 1: Many HPC programs strong-scale poorly due to in-
sufficient inter-GPU bandwidth, as shown on a system with
4 NVIDIA GV100 GPUs.

effort on the part of the programmer. Peer-to-peer transfers [51],
in which GPUs perform loads/stores directly to the physical mem-
ories of other GPUs, can potentially achieve good strong scaling
when properly coordinated with computation. However, peer-to-
peer loads perform remote accesses on demand, leading to compute
stalls. Peer-to-peer stores avoid stalls, but can result in wastage of
an already scarce interconnect bandwidth if sent to GPUs that do
not require the pushed data. Frameworks such as Gunrock [60] and
Groute [11] can improve strong scaling for some workloads but are
typically domain-specific and limited in scope.

To overcome the limitations of these techniques, we propose GPS
(GPU Publish-Subscribe), a multi-GPU memory management tech-
nique that transparently improves the performance of multi-GPU
applications following a fully Unified Memory compatible program-
ming model. GPS provides a set of architectural enhancements that
automatically track which GPUs subscribe to shared memory pages,
and through driver support, it replicates those pages locally on each
subscribing GPU. GPS hardware then broadcasts stores proactively
to all subscribers, enabling the subscribers to read that data from
local memory at high bandwidth. Figure 2 shows the behavioral dif-
ference between GPS and conventional accesses. GPS loads always
return from local memory, while GPS stores are broadcast to all
subscribers. On the other hand, conventional load/stores result in
local or remote accesses depending on physical memory location.
GPS takes advantage of the fact that remote stores do not stall
execution. Performing remote accesses on the write path instead
of the read path hides latency and enables further optimizations to
schedule and combine writes to use the interconnect bandwidth
efficiently.

GPS successfully improves strong scaling performance because it
can: (1) transfer data in a proactive, fine-grained fashion and overlap
compute with communication, (2) issue all loads to local DRAM
rather than to remote GPUs’ memory over slower interconnects,
and (3) perform aggressive coalescing optimizations that reduce
inter-GPU bandwidth requirements without violating the GPU’s
memory model.

This work makes the following contributions:

e We propose and describe GPS, a novel HW/SW co-designed
multi-GPU memory management system extension that lever-
ages a publish-subscribe paradigm to improve multi-GPU
system performance.

e We propose new simple and intuitive programming model
extensions that can naturally integrate GPS into applications
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Figure 2: Load/store paths for conventional and GPS pages.
Because GPS transfers data to consumers’ memory proac-
tively, all GPS loads can be performed to high bandwidth
local memory.

while conforming to the pre-existing NVIDIA GPU memory

model.
e To minimize the utilization of scarce inter-GPU bandwidth,
we propose a novel memory subscription management mech-
anism that tracks GPUs’ access patterns and unsubscribes
GPUs from pages they do not access.
Evaluated in simulation with several interconnects against
a 4 GPU system, GPS provides an average strong scaling
performance of 3.0x over a single GPU capturing 93.7% of
the available opportunity. In a 16 GPU system using a future
PCle 6.0 interconnect, GPS achieves an average 7.9% speedup
over a single GPU and captures over 80% of the hypothetical
performance of an infinite bandwidth interconnect.

2 BACKGROUND AND MOTIVATION

Proper orchestration of inter-GPU communication is essential for
strong scaling in multi-GPU systems. With each new GPU and
interconnect generation, the compute throughput, local memory
bandwidth, and inter-GPU bandwidth increase. However, the band-
width available to local GPU memory remains much higher than
the bandwidth available to remote GPU memories. For example,
Figure 3 shows that even though interconnect bandwidth has im-
proved 38x while evolving from PClIe 3.0 [3] to NVIDIA’s most
recent NVLink and NVSwitch-based topology [38], it remains 3X
slower than the local GPU memory bandwidth.

2.1 Inter-GPU communication mechanisms

Because local vs. remote bandwidth is a first-order performance
concern, multi-GPU workloads typically use one of the following
mechanisms (summarized in Figure 4) to manage data placement
among the GPUs’ physical memories.

¢ Host-initiated DMA using cudaMemcpy: cudaMemcpy ()
programs a GPU’s DMA engine to copy data directly between
GPUs and/or CPUs. Though CUDA provides the ability to
pipeline compute and cudaMemcpy ()-based transfers [55],
implementing pipeline parallelism requires significant pro-
grammer effort and detailed knowledge of the applications’
behavior in order to work effectively.

¢ Fault-based migration via Unified Memory (UM): Uni-
fied Memory [21] provides a single unified virtual memory
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Figure 3: Local and remote bandwidths on varying GPU plat-
forms. Despite significant increases in both metrics, a 3x
bandwidth gap persists between local and remote memories.

address space accessible to any processor in a system. UM
uses a page fault and migrate mechanism to perform data
transfers among GPUs. Although this enables data move-
ment among GPUs in an implicit and programmer-agnostic
fashion, the performance overhead of these page faults typi-
cally is a first-order performance concern.

e Hint-based migration via Unified Memory: UM also of-
fers the ability for programmers to provide hints to im-
prove performance. Read-mostly, prefetching, placement,
and “accessed-by” hints enable duplication of read-only pages
across GPUs as well as page placement on specific GPUs
and thus can reduce page faults if used correctly. However,
pipelining prefetching and compute using hints to achieve
fine-grained data sharing, our goal in GPS, is challenging
even for expert programmers. Furthermore, crucially, UM
does not support the replication of pages with at least one
writer and multiple readers. Writes to read-duplicated pages
“collapse” the page to a single GPU (usually the writer) and
trigger an expensive TLB shootdown, thus degrading per-
formance substantially [59]. GPS aims to provide a better
solution for read-write pages accessed by multiple GPUs.

o Peer-to-peer transfers: GPU threads can also perform peer-
to-peer loads and stores that directly access the physical
memory of other GPUs without requiring page migration. In
principle, peer-to-peer accesses can be performed at a fine
granularity, overlap compute and communication, and incur
low initiation overhead. However, peer-to-peer loads suffer
from the high latency of traversing interconnects such as
PCle or NVLink, often stalling thread execution beyond the
GPU’s ability to mitigate those stalls via multi-threading. On
the other hand, peer-to-peer stores typically do not stall GPU
thread execution and can be used to proactively push data
to future consumers without slowing down the computation
phases of the application.

e Message Passing Interface (MPI): MPI is a standardized
and portable API for communicating via messages between
distributed processes. With CUDA-aware MPI and optimiza-
tions such as GPUDirect Remote Direct Memory Access
(RDMA) [45], the MPI library can send and receive GPU
buffers directly, without having to first stage them in host
memory. However, porting an application to MPI increases
programmer burden, and it is hard to overlap compute and
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Figure 4: Data transfer patterns in different paradigms. In
demand-based loads and UM, transfers happen on-demand;
in memcpy, they happen bulk-synchronously at the end of
producer kernel; in GPS, proactive fine-grained transfers are
performed to all subscribers.

communication effectively by leveraging the pipelining fea-
tures of MPL

One way to avoid the remote access bottleneck is to transfer data
from the producing GPUs to the consuming GPUs in advance, as
soon as the data is generated. The consumers can then read the data
directly from their local memory when needed. These proactive
transfers help strong scaling for two reasons: (1) they provide more
opportunities to overlap data transfers with computation, and (2)
they improve locality and ensure that critical path loads enjoy
higher local memory bandwidth. As such, GPS relies on proactive
peer-to-peer stores to perform data transfers as the basis of its
performance-scalable implementation.

2.2 Publish-subscribe frameworks

Although proactive fine-grained data movement can improve local-
ity, performing broad all-to-all transfers wastes inter-GPU band-
width in cases where only a subset of GPUs will consume the data. In
these cases, tracking which GPUs read from a page and then trans-
mitting data only to these consumers can save precious interconnect
bandwidth. To track a page’s consumers and propagate updates only
to them, GPS adopts a conceptual publish-subscribe framework,
which is often used in software distributed systems [7, 15, 18, 33].

Figure 5 shows a simple example of a publish-subscribe frame-
work. It consists of publishers who generate data and subscribers
who have requested specific updates. The publish-subscribe pro-
cessing unit tracks subscription information at page granularity,
receives data updates from publishers and forwards them to sub-
scribers. This mechanism provides the advantage that publishers
and subscribers can be decoupled, and subscription management is
handled entirely by the publish-subscribe processing unit.

The major challenge faced by a publish-subscribe model relying
on proactive remote stores is deciding which GPUs should receive
the data and when the stores should be transmitted. We address
this in Section 3.
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Figure 5: A simple publish-subscribe framework.

2.3 GPU memory consistency

The NVIDIA GPU memory model [43] prescribes rules regarding
the apparent ordering of GPU memory operations and the values
that may be returned by each read operation. Of most relevance to
GPS are the notions of weak vs. strong accesses, and the notion of
scope associated with strong accesses. In short, sys-scoped mem-
ory accesses or fences are used to explicitly indicate inter-GPU
synchronization. All other access types need not be made visible
to or ordered with respect to memory accesses from other GPUs
unless sys-scoped operations are used for synchronization. GPS
makes use of these relaxed memory ordering guarantees to perform
several hardware optimizations, as described later in Section 3.3,
without violating the memory model.

3 GPS ARCHITECTURAL PRINCIPLES

In this section, we describe the different architectural principles
upon which GPS is based. Several possible hardware implementa-
tions can support the GPS semantics with differing performance
characteristics. These high-level design principles are intended to
decouple the GPS concept from our specific proposed implemen-
tation. We highlight one particular implementation approach in
Section 5.

3.1 The GPS address space

The GPS address space, which is an extension of the conventional
multi-GPU shared virtual address space, enables programmers to
incorporate GPS features into their applications through simple,
intuitive APIs (described later in Section 4). As shown in Figure 6, all
allocations made in the GPS address space have local replicas in all
subscribing GPUs’ physical memories. Subscription management
is described in Section 3.2.

Loads and stores are issued to GPS pages in the same way as they
are to normal pages, with the same syntax, although the underlying
behavior is different. GPS’ architectural enhancements intercept
each store and forward a copy to each subscriber’s local replica.
Loads to GPS pages are also intercepted but are not duplicated.
Instead, they are issued to the replica in the issuing GPU’s local
memory and can therefore be performed at full local bandwidth
and without consuming interconnect bandwidth. In the corner case
where the issuing GPU is not a subscriber to that page (e.g., because
of an incorrect subscription hint), the load is issued remotely to one
of the subscribers. This design offers GPS a significant advantage
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Figure 6: GPS address space: Allocations made are replicated
in the physical memory of all subscribers.

over existing multi-GPU programming frameworks: a programmer
can integrate GPS into their workloads with only minor changes
for allocation and subscription management and need not modify
GPU kernels written for UM, except to apply performance tuning.

3.2 Subscription management

The key innovation behind GPS is a set of architectural enhance-
ments designed to coordinate proactive inter-GPU communication
for high performance. These architectural enhancements maintain
subscription information to enable data transfer only to GPUs that
require it, enabling local accesses during consumption.

GPS provides both manual and automatic mechanisms to manage
page subscriptions. We describe the general mechanisms below, the
APIs in Section 4, and the implementation in Section 5.

Manual subscription tracking: The manual mechanism al-
lows the user to explicitly specify subscription information through
subscription/unsubscription APIs that can be called while refer-
encing each page (or a range of pages) in memory. Though this
requires extra programmer effort, it can lead to significant band-
width savings compared to an all-to-all subscription, even if the
subscription list is not minimized.

Automatic subscription tracking: For applications with an it-
erative/phase behavior wherein the access patterns in each program
segment match those of prior segments, the subscriber lists can
be determined automatically. The repetition in iterative workloads
enables GPS to discover the access patterns from one segment in
an initial profiling phase and determine the set of subscriptions for
subsequent execution.

Automatic subscriber tracking can be performed in one of two
ways: subscribed-by-default, i.e., indiscriminate all-to-all subscrip-
tion followed by an unsubscription phase, or unsubscribed-by-
default, i.e., a GPU subscribes to a page only when it issues the first
read request to that page. Either way, once captured, the sharer
information then feeds into the subscription tracking mechanism
used to orchestrate the inter-GPU communication.

It is important to note that the subscriptions are hints to GPS for
both mechanisms and are not functional requirements for correct
application execution. In other words, if a GPU issues a load to a
page to which it is not a subscriber, it does not fault; the hardware
simply issues the load remotely to one of the subscribers. Perform-
ing a peer-to-peer load to a remote GPU imposes a performance
penalty but does not break functional correctness.
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3.3 Functionally correct coalescing

While publish-subscribe models have been proposed in the past, a
unique aspect of GPS is the way it exploits the weakness of the GPU
memory consistency model described in Section 2.3. In particular,
GPS performs aggressive coalescing of stores to GPS pages before
those stores are forwarded to other GPUs, as described below.

Non-sys-scoped accesses: As described in Section 2.3, aside
from sys-scoped operations, the GPU memory model only requires
writes to be made visible to other GPUs upon execution of sys-
scoped synchronization (e.g., memory fences). GPS uses this delayed
visibility requirement to aggressively coalesce weak stores if their
addresses fall within the same cache line. Stores need not be consec-
utive to be coalesced, as the GPU memory model allows store-store
reordering as long as there is no synchronization or same-address
relationship between the stores. This decreases the data transferred
across the interconnect, saving valuable inter-GPU bandwidth. The
coalescer must be flushed only upon sys-scoped synchronization,
including the implicit release operation at the end of every grid.

The GPU memory model also does not require cache coherence
between GPUs, i.e., a consistent store visibility order, unless stores
are from the same GPU to the same address, have sys scope, or are
synchronized by sys-scoped operations. While it is possible for GPS
stores broadcast from different GPUs to the same address to cross
each other in flight and therefore arrive at different consumer GPUs
in different orders, this is not a violation of the memory model. Weak
stores performed by different GPUs to the same address simultane-
ously without synchronization are racy, and therefore, no ordering
guarantees need to be maintained. As long as proper synchroniza-
tion is being used, weak writes will only be sent to a particular
address from one GPU at a time, and point-to-point ordering will
ensure that all consumer GPUs see those stores arriving in the
same order. In this way, GPS maintains all of the required memory
ordering behavior.

sys-scoped accesses: These writes are intended for synchro-
nization and must be kept coherent across all GPUs. Therefore, GPS
neither coalesces nor broadcasts such writes but instead simply
handles them as traditional GPUs do. Specifically, all sys-scoped
accesses are sent to a single point of coherence and performed
there. Typically, the number of sys-scoped operations in programs
is low, as they are only used when grids launched concurrently
on multiple GPUs need to explicitly synchronize through memory.
Hence, the cost of not coalescing system-scoped strong stores is
minimal. Further discussion of the handling of sys-scoped writes
in our GPS implementation is described in Section 5.3.

The design choices described above ensure that GPS can deliver
consistent performance gains without breaking backward compati-
bility with the GPU programming model or memory consistency
model. This compatibility enables developers to easily integrate GPS
into their applications with minimal code or conceptual change.

4 GPS PROGRAMMING INTERFACE

We next describe the programming interface that an application
developer uses to leverage GPS features. We seek to develop a
minimal, simple programming interface to ease the integration
of GPS into existing multi-GPU applications. GPS API functions
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__global__ void mvmul(float* invec, float* outvec, ...) {

// Stores to outvec in the GPS address space are
forwarded to the replicas at each subscriber GPU
for(int i=0; i<mat_dim; i++)
outvec[tid] += mat[tid*mat_dim+i] * invec[i];
}
int main(...) {
// enable GPS for mat, vecl, and vec2
cudaMallocGPS (&mat, mat_dim*mat_dim_size);
cudaMallocGPS(&vecl, mat_dim_size);
cudaMallocGPS (&vec2, mat_dim_size);
cudaMemset (vec2, 0, mat_dim_size);
for(int iter=0; iter<MAX_ITER; iter++) {
// Automatic profiling: all GPUs are tentatively
subscribed to all GPS pages at the start
if (iter==0) cuGPSTrackingStart();
for(int device=0; device<num_devices; device++) {
cudaSetDevice (device);
mvmul <<<num_blocks, num_threads, stream[devicel>>>(

mat, vecl, vec2, ...);
mvmul <<<num_blocks, num_threads, stream[devicel>>>(
mat, vec2, vecl, ...);

// GPUs are unsubscribed from pages they did not touch
if (iter==0) cuGPSTrackingStop();
}

Listing 1: A sample GPS application. GPS requires code
changes only for GPS allocation and tracking as highlighted
in yellow.

are implemented in the CUDA library and GPU driver, just as the
existing CUDA APIs are. Listing 1 shows sample code.

Memory allocation and release: GPS provides an API call,
cudaMallocGPS(), as a drop-in replacement for cudaMalloc () (for
GPU-pinned memory) or cudaMallocManaged() (for Unified Mem-
ory) APIs. This call allocates memory in the GPS virtual address
space and backs it with physical memory in at least one GPU. At
allocation, the programmer can pass an optional manual parameter
to indicate that subscriptions will be managed explicitly for the
region. Otherwise, GPS performs automatic subscription manage-
ment. GPS re-purposes the existing cudaFree () function to release
a GPS memory region.

Manual subscription: To allow expert programmers to explic-
itly manage subscriptions, GPS overloads the existing cuMemAdvise ()
API used for providing hints to UM with two additional hints
to perform manual subscription and unsubscription. Specifically,
GPS uses new flag enums CU_MEM_ADVISE_GPS_SUBSCRIBE and
CU_MEM_ADVISE_GPS_UNSUBSCRIBE for subscription and unsubscrip-
tion, respectively. Upon subscription, GPS backs the region with
physical memory on the specified GPU. When a programmer un-
subscribes a GPU from a GPS region, GPS removes the GPU from
the set of subscribers for that region and frees the corresponding
physical memory. GPS ensures that there is at least one subscriber
to a GPS region and will return an error on attempts to unsubscribe
the last subscriber, leaving the allocation in place.

Automatic subscription and profiling phase: As described
in Section 3.2, the automatic subscription mechanism comprises a
hardware profiling phase during which the mechanism observes ap-
plication access patterns and determines a set of subscriptions. This
profiling phase requires the user to demarcate the start and end of
the profiling period using two new APIs, cuGPSTrackingStart()
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and cuGPSTrackingStop(), which are similar to the existing CUDA
calls cuProfilerStart() and cuProfilerStop(). GPS automati-
cally updates subscriptions at the end of the profiling phase; a GPU
remains a subscriber if and only if it accessed the page during pro-
filing. Thus, upon receiving cuGPSTrackingStop(), GPS invokes
the API cuMemAdvise(..., CU_MEM_ADVISE_GPS_UNSUBSCRIBE)
to unsubscribe GPUs from any page they did not access during
profiling. (Recall that a GPU may still access a page to which it is
not subscribed, but such accesses will be performed remotely at re-
duced performance; hence, profiling need not be exact to maintain
correctness).

5 ARCHITECTURAL SUPPORT FOR GPS

We now describe one possible GPS hardware implementation that
extends a generic GPU design, such as NVIDIA’s recent Ampere
GPUs. Our hardware proposal comprises two major components.
First, it requires one bit in the GPU page table entry (PTE), the GPS
bit, to indicate whether a virtual memory page is a GPS page (i.e.,
potentially replicated). Second, it requires a new hardware unit to
propagate writes to GPUs that have subscribed to particular pages.

5.1 GPS memory operations

GPS must support the following basic memory operations:

Conventional loads, stores, and atomics: Memory accesses
to non-GPS pages (virtual addresses for which the GPS bit is not
set in the PTE) proceed as they do on conventional GPUs, through
the existing GPU TLB and cache hierarchy to either local or remote
physical addresses.

GPS loads: Figure 7 shows the paths taken by writes and reads
to GPS pages. Note that this figure is a simplified view intended
to highlight only the modifications required by GPS. For loads
issued to the GPS address space by a GPU that is a subscriber to
the page, the conventional GPU page table is configured at the
time of subscription to translate the virtual address to the physical
address of the local replica. GPS loads thus follow the same path
as conventional loads to local memory, as shown by R1, R2, R3 in
Figure 7. In the uncommon case, if a GPU is not subscribed to this
particular page, either the load forwards a value from the remote
write queue (Section 5.2) if there is a hit or it issues remotely to one
of the subscribers.

GPS stores and atomics: Stores to GPS pages initially proceed
as normal stores, as shown by W1 and W2 in Figure 7. When a
thread issues a store to an address whose GPS bit is set in the
conventional TLB, and for which there is a local replica, the write
operation is forwarded to the local replica with both virtual and
physical address (W3), ensuring that subsequent local reads from
the same GPU thread will observe the new write, a requirement
of the existing GPU memory model. This pattern also ensures that
the L2 cache holding the local replica will serve as a common intra-
GPU ordering point for stores to that address prior to their being
forwarded outside of the GPU, as the memory model requires. In
the uncommon case, there is no local replica, and a dummy physical
address is used. In addition, whether or not there is a local replica,
the write is also forwarded with its virtual address to the GPS unit
(described next) for replication to remote subscribers (W4, W5, W6).
Atomics follow the same behavior as stores.
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Figure 7: Modifications to GPU hardware needed for GPS
provisioning.

5.2 GPS hardware units and extensions

Page table support: Our GPS implementation modifies the base-
line GPU page table entries (PTEs) to re-purpose a single currently
unused bit (of which there are many [37]) to indicate whether a
given page is a GPS page. When this bit is set, the virtual address
is GPS-enabled, and the stores to the page will be propagated to
the GPS units described below. The baseline GPU virtual memory
system remains unchanged aside from this extension.

Our GPS support also introduces a new secondary page table, the
GPS page table, for tracking multiple physical mappings that can
coexist for a given virtual address when multiple GPUs subscribe
to a page. This limited page table for the GPS address space is a
variant of a traditional 5-level hierarchical page table with very
wide leaf PTEs. Notably, the GPS page table lies off the critical
path for memory operations, as it is used only for remote writes
triggered by writes to GPS pages. These remote writes are already
aggressively coalesced, so the additional latency of the GPS address
translation unit can overlap with the coalescing period and adds
only a small additional latency. Furthermore, by design, these writes
are not required to become visible until the next synchronization
boundary, so they are not latency-sensitive. Therefore, the latencies
imposed by the address translation unit are not a critical factor,
even under TLB misses.

Each GPS-PTE contains the physical page addresses of all the
remote subscribers to that page, as shown in Figure 7. The GPS-PTE
is sized at GPU initialization based on the number of GPUs in the
system. For example, with 64KB pages, for a Virtual Page Number
(VPN) size of 33 bits and Physical Page Number (PPN) size of 31
bits [37], for a 4 GPU system, the minimum GPS-PTE entry size is
126 bits.

We choose to allocate memory in the GPS address space using
64KB pages for two reasons. First, the negative impact of false shar-
ing due to large pages is multiplied due to GPS’ replication of remote
stores. Second, the GPU’s conventional TLB is already sized to pro-
vide full coverage of the entire VA range [47]. As discussed later in
Section 7.4, the GPS address translation unit requires a surprisingly
small translation capacity even with 64KB pages. Therefore, neither
TLB lies on the execution’s critical path.
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Coalescing remote writes: If a store’s translation information
indicates it is to a GPS-enabled address, the GPS write proceeds to
the remote write queue (W4). This queue is fully associative and
virtually addressed at cache block granularity. The queue coalesces
all writes to the same cache block (unless they are sys-scoped) and
buffers them until they are drained to remote GPU memory. This
simple optimization results in substantial inter-GPU bandwidth
savings for many applications yet maintains weak memory model
compatibility.

Whenever the occupancy of the write combining buffer reaches
a high watermark, it seeks to drain the least recently added entry to
the remote destinations. In our evaluation, we set this high water-
mark to one less than the buffer’s capacity to maximize coalescing
opportunity. On draining, the flushed entry moves to the GPS ad-
dress translation unit. Additionally, the remote write queue unit
must fully drain at synchronization points, e.g., when a sys-scoped
memory fence is issued. In our final proposal with 512 entries, the
GPS-write buffer requires 68 KB of SRAM storage, an insignificant
chip area for a single resource shared among all SMs in the GPU.

GPS address translation: When a GPS store reaches the GPS
address translation unit (W5), it looks up translation information
cached from the GPS page table in its internal, wide GPS-TLB.
Much like conventional TLB misses, GPS-TLB misses trigger a
hardware page walk that fetches a GPS-PTE entry containing the
physical addresses for all subscribers. Once translated, the GPS
address translation unit sends a duplicate copy of the store for each
subscriber to the inter-GPU interconnect (W6). The GPS address
translation unit also drains at synchronization points.

Access tracking unit: Our GPS implementation uses subscribed-
by-default profiling: it employs a dynamic mechanism that typically
begins by subscribing all GPUs to the entirety of GPS allocations at
the beginning of execution. As discussed in Section 4, GPS tracks
the access patterns during a profiling phase, after which it un-
subscribes each GPU from pages they did not access. Although
the early over-subscription initially transfers more data than is re-
quired, unsubscribed-by-default profiling incurs stalls due to faults
or remote accesses on the first touch and hence is more expensive.

The GPS access tracking unit provides the hardware support
for runtime subscription profiling. It maintains a bitmap in DRAM
with one bit per page in the GPS address space. Misses at the last
level conventional GPU TLBs to pages in the GPS virtual address
space are forwarded to the access tracking unit, which sets the
bit corresponding to the page (as shown by T1 in Figure 7). TLB
misses are infrequent yet cover all pages accessed by the GPU,
so the bandwidth required to maintain this bitmap is low (typi-
cally only 1.4 TLB misses per thousand cycles [47]). We maintain
the bitmap in DRAM since the bitmap is used only during the ini-
tial profiling and unsubscription. Tracking a 32GB virtual address
range, the bitmap requires only 64KB of DRAM, and updates can be
aggressively cached or write-combined to minimize DRAM band-
width impact. Thus, the total area and energy consumed by these
hardware extensions are negligible relative to the GPU SoC.

The bitmap managed by the access tracking unit is read by the
GPU driver during the cuGPUTrackingStop() API call and used to
configure the conventional and GPS page tables appropriately. GPS
pages with only a single subscriber are downgraded to conventional
pages within the page tables, as duplication of writes to such pages
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at the conventional TLB (Section 5.1) is an unnecessary waste of
resources when there is only one subscriber. For GPS pages with
multiple subscribers, the GPS bit is set in the conventional page
table entry for that page, and the GPS page table entry for the
page is updated to record the physical addresses of all subscribers’
replicas for that page.

5.3 Discussion

Coalescing in the L2 cache: An alternative implementation strat-
egy for GPS would be to perform coalescing directly within the L2
cache rather than provisioning a dedicated structure. Given that the
GPS remote write queue amounts to only a few kilobytes of state
and the L2 size is in megabytes (6MB in NVIDIA V100 GPUs and
40MB in NVIDIA A100 GPUs [39]), cache capacity impact would
be negligible. We chose to implement a dedicated write queue to
isolate its impact from any other cache interference effects and so
that the only change required to the L2 cache will be a shim at the
ingress point, which forwards GPS writes to the GPS remote write
queue.

GPS remote write queue addressing: Our GPS implementa-
tion assumes the remote write queue is virtually addressed, irre-
spective of whether it is maintained as a dedicated SRAM structure
or as specially marked and reserved cache lines in L2. If GPS were
to perform translation prior to the GPS write queue, a remote store
would require one entry per subscribing GPU (one per remote phys-
ical address); performing translation as the stores are drained to
the interconnect conserves space in the write queue.

Handling sys-scoped writes: Strong sys-scoped writes must
be kept coherent across all GPUs. Our GPS implementation handles
sys-scoped writes in the same way that UM handles writes to pages
annotated with read-mostly cudaMemAdvise hints. Upon detection
of a sys-scoped store to a GPS page, the access faults, all in-flight
accesses to the page are flushed, and the page is collapsed to a
single copy and demoted to a conventional page (i.e., its GPS bit
is cleared). Accesses to the page are all issued to the GPU hosting
the single physical copy from this point on. This approach ensures
coherence and same-address ordering for this access and all future
accesses to the page.

As mentioned in Section 3.3, sys-scoped accesses are rare, and
hence the impact on typical programs is minimal. The user is ex-
pected to explicitly opt pages holding synchronization variables out
of GPS (i.e., use cudaMalloc instead of cudaMallocGPS). If the user
provides incorrect hints, then just as with UM, there will be a per-
formance penalty. Nevertheless, the execution remains functionally
correct.

Handling memory oversubscription: If the GPU driver swaps
out a page from a subscriber due to oversubscription, that GPU will
be unsubscribed and will access that page remotely.

6 EXPERIMENTAL METHODOLOGY

To evaluate the benefits of GPS, we extend the NVIDIA Architec-
tural Simulator (NVAS) [57] to model multi-GPU systems com-
prising NVIDIA GV100 GPUs on PCle, with parameters shown in
Table 1. The simulator is driven by application traces collected at
the SASS (GPU assembly) level using the binary instrumentation
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GPU Parameters
Cache block size 128 bytes
Global memory 16 GB
Streaming multiprocessors (SM) 80
CUDA cores/SM 64
L2 Cache size 6 MB
Warp size 32
Maximum threads per SM 2048
Maximum threads per CTA 1024

GPS Structures
Remote write queue

512 entries

Remote write queue entry size 135 bytes
TLB 8-way set associative
TLB size 32 entries
Virtual address 49 bits
Physical address 47 bits

Table 1: Simulation settings, based on NVIDIA V100.

tool NVBit [58] on real hardware. These traces contain CUDA API
events, GPU kernel instructions, and memory addresses accessed,
but no pre-recorded timing events. The simulator models the tim-
ing aspects of the trace replay in accordance with the GPU and
interconnect architectural models and respects all functional de-
pendencies such as work scheduling, barrier synchronization, and
load dependencies. We have specifically calibrated the link and
switch parameters in our interconnect models to match several
(sometimes speculative) PCle generations. This simulator has been
correlated across a wide range of benchmarks and GPU models but
remains fast enough to model complex multi-GPU systems and the
hard-to-scale applications suitable for evaluating GPS.

We evaluate a suite of multi-GPU applications shown in Table 2.
These include all applications used to evaluate PROACT [34]. We
also study those applications from the Tartan benchmark suite [29],
whose strong scaling performance was bound by inter-GPU com-
munication when measured on real systems. These applications
also possess varying communication patterns, giving us a broader
opportunity to evaluate GPS. For the Tartan applications not bound
by inter-GPU communication, we found that GPS obtains the same
performance as the native version and have not included them in
the interest of space. We modify the applications only to imple-
ment the different multi-GPU programming paradigms, and the
partitioning of applications across multi-GPUs remains the same
as the original code for all paradigms. All our application variants
are written in CUDA and compiled using CUDA 10.

To demonstrate the ability of GPS to improve multi-GPU scal-
ability, we compare it with several contemporary multi-GPU pro-
gramming paradigms as discussed in Section 2.1:

Unified Memory without Hints: We simulate baseline Unified
Memory without user-provided hints. Application code allocates
shared memory regions using cudaMallocManaged() APL By de-
fault, the simulator allocates pages on the first GPU that touches
the page. Subsequent accesses by peer GPUs to the same page will
result in fault-based page migration as described in Section 2.1.

Unified Memory with Hints: For this paradigm, we hand-tune
each application using a combination of four manual hints, namely
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read mostly, accessed by, prefetch, and preferred location hints.
Based on the compute partitioning across GPUs, we set the GPU
that issues writes to a given memory region as its preferred location.
The most proactive approach we can configure with UM hints is
to pick one consumer to be the preferred location, and since each
producer of a page is always also a consumer of the page in our
applications, that was a convenient and close-to-optimal choice.
We also set GPUs that read from remote pages as accessed by those
GPUs. Although read-mostly hints are generally effective, we did
not use them because our applications had no read-only pages
accessed by multiple GPUs. Before each kernel launch, we enable
GPUs to prefetch remote regions they may access through prefetch
hints.

Remote Demand Loads (RDL): While GPS performs all loads
locally by issuing the stores to all subscribers, RDL performs the
converse: it issues stores to local memory and loads to the most
recent GPU to issue a store to a given page. We believe that this
paradigm is representative of an expert programmer who manually
tracks writers to each page. We simulate this expertise by explicitly
tracking the latest write to each page in the simulator and using
this information during address translation to issue the read to the
appropriate GPU.

Memcpy: This paradigm duplicates data structures among all
GPUs and broadcasts updates via cudaMemcpy () calls at the syn-
chronization barriers. This duplication ensures that all data struc-
tures are resident in local GPU memory when accessed by kernels
in the subsequent synchronization phase; there are no remote ac-
cesses during kernel execution. However, there is also no overlap
between data transfers and compute.

GPS with automatic subscription: We implement GPS with
automatic subscription management by modifying applications as
described in Section 4 and marking all memory allocations as GPS
allocations.

Infinite bandwidth: Finally, we provide an infinite bandwidth
comparison, which establishes an upper bound on achievable multi-
GPU performance if all data were always accessible locally at each
GPU (i.e., it ignores all transfer costs). We obtain this comparison
by eliding the data transfer time from the memcpy variant.

7 EXPERIMENTAL RESULTS

GPS relies on fine-grained, proactive data transfers to remote GPUs
during kernel execution to optimize GPU locality. The subscrip-
tion management mechanism ensures that only the required data
is transferred, resulting in interconnect bandwidth savings. GPS
performance benefits arise for three reasons: (1) GPS proactively
publishes updates to subscribers, enabling them to fetch hot-path
data from high bandwidth local memory. (2) By automatically iden-
tifying subscribers for a given page, GPS publishes updates only to
the GPUs that require them, resulting in significant interconnect
bandwidth savings. (3) Coalescing in the GPS write queue results in
substantial bandwidth reduction, especially for applications where
subscriptions alone are not sufficient to achieve peak performance.

7.1 End-to-end performance

Figure 8 shows the 4-GPU application speedup over a single GPU
for the different programming paradigms described in Section 6.
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Application Description Predominant Communication Pattern
Jacobi Iterative algorithm that solves a diagonally dominant system of linear equations Peer-to-peer
Pagerank Algorithm used by Google Search to rank web pages in their search engine results Peer-to-Peer
SSSp Shortest path computation between every pair of vertices in a graph Many-to-many
ALS Matrix factorization algorithm All-to-all
CT Model Based Iterative Reconstruction algorithm used in CT imaging All-to-all
B2rEqwp 3D earthquake wave-propogation model simulation using 4-order finite difference method Peer-to-peer
Diffusion A multi-GPU implementation of 3D Heat Equation and inviscid Burgers’ Equation Peer-to-peer
Hit Simulating Homogeneous Isotropic Turbulence by solving Navier-Stokes equations in 3D Peer-to-peer

Table 2: Applications under study.

®UM ®mUM+hints mRDL Memcpy GPS ® Infinite BW

Performance relative to 1 GPU
N
w

Figure 8: 4-GPU speedup of different paradigms.

First, we observe that the unified memory paradigm is ineffective
for these applications, despite having attractive programmability
properties, due to the cost of page faults necessary to migrate
data between GPUs. While work is ongoing [9, 64], it is unclear if
executing page faults on the GPU’s critical load path in multi-GPU
systems will ever scale well.

Second, though applying UM hints results in performance bene-
fits over baseline UM, we found that extracting maximum benefits
out of hints by achieving fine-grained data sharing requires de-
tailed knowledge about the data access patterns of the applications
along with significant programmer effort. The performance penalty
for incorrectly applied hints is still substantial, ranging from slow
remote access in the best case to thrashing page migrations and ex-
pensive faults and TLB shootdowns in the worst case. Also, writes
to pages replicated across subscribers result in the replicated pages
collapsing back to the writer, further degrading performance. This
degradation can be somewhat mitigated through profiling and fine-
tuning of hints, but generally this approach is only effective after
substantial expert effort and nevertheless faces fundamental limita-
tions like the inability to replicate read-write pages, giving GPS an
advantage.

Third, memcpy at kernel boundaries performs well for CT, but on
average does not achieve any improvement over a well-optimized
single GPU implementation, due to inefficient interconnect utiliza-
tion during compute phases. This finding is significant because
it demonstrates that though using programmer-directed memcpy
to optimize locality is the most common programming technique
today, it is unlikely to result in good strong scaling performance
for applications bound by inter-GPU communication.

4 subscribers  m 3 subscribers  m 2 subscribers

=
o
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Figure 9: Subscriber distribution for shared application
pages. GPS subscriptions result in interconnect bandwidth
savings for all pages with less than 4 subscribers.

Finally, remote data loading performs well for applications where
multi-threading is sufficient to hide remote load latencies; however,
for others, these loads lie in the critical path and can have a severe
adverse effect on performance.

The GPS approach ensures both a good overlap of communica-
tion and computation phases while at the same time decreasing
the unwanted stores to GPUs that will not access them (locally or
remotely). As a result, GPS offers an overall average speedup of 3x
(out of 3.2x possible) over the single-GPU programs. Furthermore,
we observe that EQWP achieves greater than 4x speedup due to
an improvement in L2 hit rate from 55% to 68% when scaling to 4
GPUs due to the increase in aggregate cache capacity.

7.2 Benefits of subscription tracking

Figure 9 shows the distribution of GPS pages with more than one
subscriber at the beginning of the GPS execution phase. Whereas
some applications do perform all-to-all transfers for nearly all pages
in the GPS space (ALS), other applications (like Jacobi) require only
one remote subscriber for most pages because of how the algo-
rithm performs boundary exchange of halos. The variation in these
applications’ subscription sets supports the idea that programmer
efficiency is maximized by allowing promiscuous subscription to
the GPS space, with automatic hardware unsubscription when the
programmer cannot easily determine the ideal subscription set for
each GPU.

Figure 10 compares the total data moved over the interconnect for
all the paradigms. We normalize the numbers for all the paradigms
to the memcpy variant since it copies all shared data exactly once
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Figure 10: Total data moved over interconnect normalized to
memcpy (bulk-synchronous transfers).
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Figure 11: Performance sensitivity to subscription.

across all the GPUs, thus enabling us to quantify the additional
write traffic introduced by each paradigm. The figure shows that the
effectiveness of each technique is highly dependent on the access
pattern of the applications.

We find that Unified Memory often causes significant increases
in interconnect traffic compared to manual memcpy because the
presence of multiple subscribers to the same page results in pages
thrashing back and forth between the multiple GPUs that access it.
The exceptions are Jacobi and CT, where the interconnect traffic
due to memcpy needlessly copying data to GPUs that do not access
them outweighs the traffic due to page migrations. Adding hints to
UM decreases the total data moved when compared to UM in all
cases except diffusion, where more fine-grained prefetching hints
are required to avoid over-fetching pages needlessly. RDL moves
less data than memcpy in all cases except for ALS, wherein a lack
of temporal locality results in the same cacheline being fetched
multiple times over the interconnect.

Compared to other paradigms, GPS’s unsubscription mechanism
drastically reduces the total data transferred over the interconnect
in most cases. However, compared to the memcpy paradigm, there
may be improvement or degradation in the amount of data trans-
ferred. We observe improvements when GPS allows small gran-
ularity updates to occur within a page, in contrast to bulk DMA
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Figure 12: 16-GPU performance achieved by different
paradigms.

transfers. When degradation occurs, it is typically due to the GPS
write combining buffer failing to coalesce multiple writes to the
same block effectively. However, if the excess writes do not saturate
the interconnect, they will not typically stall GPU execution.

The end-to-end performance benefits of subscription tracking
are shown in Figure 11, which compares the performance of GPS
with and without subscription. The bandwidth savings due to sub-
scription tracking is the primary factor in GPS’s scalable perfor-
mance results for most applications. The exceptions are ALS and
CT, where a majority of the shared pages are subscribed by all the
GPUgs, resulting in significant all-to-all transfers.

7.3 Scalability beyond 4-GPUs

To understand GPS’s scalability as GPU counts in a system in-
crease, we simulate the performance of the different programming
paradigms on a system comprising 16 NVIDIA GV100 GPUs us-
ing a projected PCle 6.0 interconnect (operating at 128GB/s). Fig-
ure 12 shows the performance relative to one GPU for each of these
paradigms. The application performance trend across the five tech-
niques is similar to the 4-GPU trends discussed in Section 7.1. While
current paradigms do not scale well on average, GPS achieves scal-
able performance with a mean speedup of 7.9%, capturing 80% of
the performance opportunity available when modeling an infinite
bandwidth interconnect.

7.4 Sensitivity Studies

Interconnect bandwidth: Figure 13 provides the geometric mean
performance of each programming paradigm shown in Figure 8
while increasing the throughput of the inter-GPU interconnect.
Our results show that despite expected dramatic improvements in
PCle and other inter-GPU interconnects [4, 41], strong scaling re-
mains difficult to achieve using traditional GPU multi-programming
paradigms. Conversely, as GPUs move to higher performance inter-
connects, GPS will approach the limits of performance scalability
by making efficient use of inter-GPU bandwidth.

Write queue size: Sizing the GPS remote write queue properly
is critical to overall GPS system performance. An ideal queue con-
tains enough entries to exploit applications’ temporal locality but is
not so large that the associative lookup operations become overly
expensive. Figure 14 studies the sensitivity of buffer size versus
achieved hit rate. With 512 buffer entries all applications achieve
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Figure 13: Sensitivity to interconnect bandwidth.

near peak performance. Further performance is difficult to capture
due to random writes that have neither temporal nor spatial locality.
We note that Jacobi exhibits a 0% hit rate since all spatial locality is
fully captured in the coalescer internal to the SM, while Pagerank,
ALS, and SSSP exhibit a 0% hit rate since they predominantly issue
atomic operations whose coalescing is not supported by the GPS
write queue.

GPS-TLB Size: In virtual memory systems, the translation in-
formation for a virtual address will typically be fetched only once
(upon the first request to the page), and subsequent accesses to the
page will result in TLB hits. The GPS-TLB is no exception and it is
important to size the GPS-TLB appropriately to capture locality in
the GPS space. GPUs now have thousands of entries in their last
level TLB [35] and we initially expected the GPS-TLB to require a
similar number of entries. However, we found that the GPS-TLB hit
rate approaches 100% at just 32 entries. We find that because the
GPS-TLB only services a fraction of the entire GPU memory space
(GPS-allocated heap pages) and it does not service read requests to
the GPS address space (they are typically serviced from the normal
local memory system), the GPS-TLB is under substantially less pres-
sure than the general-purpose GPU TLBs, and can thus be much
smaller.

Page size: To measure the impact of the virtual memory page
size, we study the performance of GPS under three page sizes,
namely, 4kB, 64kB, and 2MB. While a smaller page size can decrease
the false sharing of GPS pages, it significantly increases the pressure
on all the TLBs in the GPU, resulting in the 4kB variant being 42%
slower than 64kB. On the contrary, though a larger page size enables
improved TLB hit rates, the interconnect traffic increases due to
larger number of redundant remote transfers, resulting in the 2MB
variant being 15% slower than 64kB. Therefore, 64kB is the sweet
spot we focus on in our evaluation.

7.5 Limitations of the GPS approach

The GPS paradigm does not achieve maximum theoretical perfor-
mance due to three primary issues. First, even though a GPU may
subscribe to a page, it may only require updates to a portion of the
(64kB) page, yet the interconnect will still transmit all updates to
this page due to false sharing. Second, GPUs typically issue inter-
connect transfers at cache line granularity. We observe that not all
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Figure 14: Sensitivity to GPS write queue size.

bytes within a cache block are updated for many HPC applications,
resulting in the transfer of some unneeded bytes. Third, although
the write combining buffer coalesces stores to the same cache block,
if the stores are temporally distant, the prior store might have al-
ready been flushed from the write combining buffer before the
subsequent store to the same cache block arrives. Despite these
inefficiencies, GPS represents a significant performance improve-
ment over the state-of-the-art in multi-GPU performance scalability
while also providing a simple and universal programming interface.

8 RELATED WORK

Prior work [6, 9, 11, 25, 32, 62] has explored the use of various hard-
ware and software mechanisms to improve multi-GPU performance.
Our work explores employing the publish-subscribe paradigm for
strong scaling in multi-GPU systems. Prior work [49, 50, 56] has
also proposed different mechanisms for inter-GPU coherence. GPS
does not implement an expensive coherence protocol because it is
not required for GPU memory model compatibility.

Several works propose multi-GPU memory management solu-
tions. Although Griffin [9] optimizes page migration, reads to pages
accessed by more than one GPU still result in on-demand remote
reads that can fall on the execution critical path. GPS avoids these
demand reads. CARVE [62] derives its benefits from caching re-
mote data in local DRAM. However, it does not proactively update
locally cached data, resulting in demand reads to data updated by
peer GPUs. Only subsequent reads, after the first demand miss, are
serviced from the DRAM cache, thus benefiting only workloads
with substantial data re-use.

Several teams have studied prefetching in the context of single
GPUs [26, 27, 52], but multi-GPU systems pose new challenges due
to concurrent accesses and the high cost of GPU TLB shootdowns to
migrate pages among the GPUs. NVIDIA’s Unified Memory allows
programmers to explicitly provide data placement hints [36] to
improve the locality through programmer-controlled prefetching
and decrease the rate of page migration in multi-GPU systems. It
also provides a mechanism to allow read-only page duplication
among GPUs, but upon any write to the page, it must collapse back
to a single GPU. In future work, it could be possible to improve UM
performance by layering it on top of a GPS-like system.
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The publish-subscribe communication paradigm for distributed
interaction has been explored by prior work [2, 7, 8, 17]. Hill et
al. [23] propose a Check-In/Check-out model for shared-memory
machines. The more traditional alternative to publish-subscribe
support is NUMA memory management. Dashti et al. [14] develop
and implement a memory placement algorithm in Linux to address
traffic congestion in modern NUMA systems. Many other works [1,
16, 28, 48, 63] perform NUMA-aware optimizations to improve
performance, and hardware-based peer caching has been explored
but is yet to be adopted by GPU vendors [10, 13, 30, 46, 54]. Recently
DRAM-caches for multi-node systems [12] have been proposed to
achieve large capacity advantages.

Prior work has also explored scoped synchronization for memory
models [19, 22, 24, 31, 44, 61]. Non-scoped GPU memory models
are simpler [53], but do not permit the same type of coalescing as
GPS, which makes explicit use of scopes.

9 CONCLUSION

Strong scaling in multi-GPU systems is a challenging task. In this
work, we proposed and evaluated GPS, a HW/SW multi-GPU mem-
ory management technique to improve strong scaling in multi-GPU
systems. GPS automatically tracks the subscribers to each page of
memory and proactively broadcasts fine-grained stores to these sub-
scribers. This enables each subscriber to read data from their local
memory at high bandwidth. GPS provides significant performance
improvement while retaining compatibility with conventional GPU
programming and memory models. Evaluated on a model of 4
NVIDIA V100 GPUs and several interconnect architectures, GPS
offers an average speedup of 3.0x over 1 GPU and performs 2.3 bet-
ter than the next best available multi-GPU programming paradigm.
On a similar 16 GPU system, GPS captures 80% of the available
performance opportunity, a significant lead over today’s current
multi-GPU programming models.
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